IMO Meteor Shower Calendar 2010

compiled by Alastair McBeath. Based on in

formation in Handbook for Meteor Observers, edited by Jürgen Rendtel and Rainer Arlt, IMO,
2008 (referred to as ‘HMO’ in the Calendar), and “How good is the IMO Working List of Meteor Showers?”
by Sirko Molau, in Proceedings of the IMC, Roden, 2006, edited by Felix Bettonvil and Javor Kac, IMO, 2007,
pp. 38–54 (referred to as ‘VID’ in the Calendar), as amended by subsequent discussions and additional material
extracted from reliable data analyses produced since. Particular thanks are due to Rainer Arlt, David Asher,
Jeff Brower and David Entwistle for helpful comments in respect of events in 2010.


Introduction

Welcome to the 20th International Meteor Organization (IMO) Meteor Shower Calendar, for
2010. Of the more active annual showers, only the Perseids, Leonids and Geminids are especially
well-placed for observing as regards the Moon. Although it is one of numerous showers peaking
unhelpfully close to fullMoon, the irregular June Bo¨otids may produce readily-detectable activity
again this year too. There are always minor showers to be monitored, of course, and ideally,
meteor observing should be carried on throughout the year to check on all the established
sources, and for any new ones. Such routine monitoring is possible now with automated video
systems especially, but we appreciate not everyone is able to employ these, and that observing
in other ways regularly is impractical for most people, so the Shower Calendar has been helping
to highlight times when a particular effort might be most usefully employed since 1991.
The heart of the Calendar is the Working List of Visual Meteor Showers, Table 5, which has
been undergoing a thorough revision in the last few years, a process that is still underway, in
order to help it remain the single most accurate listing available anywhere today for naked-eye
meteor observing. Of course, for all its accuracy, it is a Working List, so is continually subject
to further checks and corrections, based on the best data we had at the time the Calendar was
written, thus it is always as well to check the information here fully, taking account of any later
changes noted in the IMO’s journal WGN or on the IMO website, before going out to observe
(and please notify us if you find any anomalies!).

This is a particularly dynamic time for minor shower studies, with video results suggesting
weak showers that have apparently passed unnoticed by visual observers previously, as well as
sometimes revealing fresh aspects of those already known, and even of the low-activity phases
of some of the major showers well away from their maxima. Video has established itself as a
valuable tool in meteor studies in recent years, and professional radar meteor examinations have
been producing excellent new results as well, but we should not forget the other instrumental
techniques available to amateur observers. Telescopic observations can also separate minor
shower activity from the omnipresent background sporadics, and detect showers whose meteors
are too faint even for current video systems. Still-imaging enables a whole range of studies to be
carried out on the brighter meteors particularly, and multi-station observing with still or video
cameras can allow orbital data to be established, essential for meteoroid-stream examinations.
Showers with radiants too near the Sun for observing by the various optical methods can be
detected by forward-scatter radio or radar observations. Some of these showers are given in
Table 7, the Working List of Daytime Radio Meteor Streams. Automated radio and radar work
also allows 24-hour coverage of meteor activity.

The IMO’s aims are to encourage, collect, analyze, and publish combined meteor data obtained
from sites all over the globe, to help better our understanding of the meteor activity detectable
from the Earth’s surface. Thus, we encourage these more specialist forms of observing alongside
visual work. Consequently, for best effects, all meteor workers, wherever you are and whatever
methods you use to record meteors, should follow the standard IMO observing guidelines when
compiling your information, and submit those data promptly to the appropriate Commission for
analysis (contact details are at the end of the Calendar). Thanks to the efforts of the many IMO
observers worldwide since 1988 that have done this, we have been able to achieve as much as we
have to date, including keeping the shower listings vibrant. This is not a matter for complacency
however, since it is solely by the continued support of many people across the planet that our
steps towards constructing a better and more complete picture of the near-Earth meteoroid flux
can proceed.

Although timing predictions are included below on all the more active night-time and daytime
shower maxima, as reliably as possible, it is essential to understand that in many cases, such
maxima are not known more precisely than to the nearest 1◦ of solar longitude (even less accurately
for the daytime radio showers, which have received little regular attention until quite
recently). In addition, variations in individual showers from year to year mean past returns
are only a guide as to when even major shower peaks can be expected. As noted already, the
information given here may be updated after the Calendar has been published. Some showers
are known to show particle mass-sorting within their meteoroid streams, so the radar, radio,
still-imaging, telescopic, video and visual meteor maxima may occur at different times from one
another, and not necessarily just in those showers. The majority of data available are for visual
shower maxima, so this must be borne in mind when employing other observing techniques.
However and whenever you are able to observe, we wish you all a most successful year’s work
and very much look forward to receiving your data. Clear skies!


Antihelion Source

The Antihelion Source (ANT) is a large, roughly oval area around α = 30◦ by δ = 15◦ in size,
centred about 12◦east of the solar opposition point on the ecliptic, hence its name. It is not
a true shower at all, but is rather a region of sky in which a number of variably, if weakly,
active minor showers have their radiants. Until 2006, attempts were made to define specific
showers within this complex, but this often proved very difficult for visual observers to achieve.
IMO video results from the last decade have shown why, because even instrumentally, it was
impossible to define distinct radiants for many of the showers here! Thus we believe currently
it is best for observers to simply identify meteors from these streams as coming from the ANT
alone. At present, we think the July-August α–Capricornids (CAP), and particularly the δ–
Aquariids (SDA), should remain discretely-observable visually from the ANT, so they have been
retained on the Working List, but time and plenty of observations will tell, as ever. Later in
the year, the strength of the twin Taurid showers (STA and NTA) means the ANT should be
considered inactive while the Taurids are underway, from late September to late November. To
assist observers, a set of charts showing the location for the ANT and any other nearby shower
radiants is included here, to complement the numerical positions of Table 6, while comments on
the ANT’s location and likely activity are given in the quarterly summary notes.


January to March

The waning gibbous Moon ruins the northern-hemisphere Quadrantid maximum on January 3,
due around 19h UT, though a possible short-lived, quite strong, peak from the shower may
happen instead sometime between roughly 12h to 16h UT on January 3 (see the diagram on
HMO p. 129). Recent video data suggests too that the Quadrantids may be active, but only
weakly, for longer than visual estimates have inferred, perhaps from approximately December 28
to January 12. The probable southern-hemisphere α-Centaurid peak is less moonlit, while mid-
March brings a still-better minor γ-Normid return for similarly southern sites. The ANT’s
radiant centre starts January in south-east Gemini, and crosses Cancer during much of the
month, before passing into southern Leo for most of February. It then slips through southern
Virgo during March. Likely ANT ZHRs will be < 2, though IMO analyses suggest there may be an ill-defined minor peak with ZHRs ∼ 2 to 3 around λo ∼ 286◦–293◦ (January 6 to 13 in 2010,
much of which has only a waning crescent Moon, if so), and ZHRs could be ∼ 3 for most of
March. The late January to early February spell, during which several new, swift-meteor, minor
showers, radiating from the Coma-Leo-Virgo area have been proposed in some recent years,
enjoys a waxing Moon for its potential core period, January 20–27. Theoretical approximate
timings (rounded to the nearest hour) for the daytime radio shower maxima this quarter are:
Capricornids/Sagittariids – February 1, 15h UT; and χ-Capricornids – February 13, 16h UT.
Recent radio results have implied the Cap/Sgr maximum may variably fall sometime between
February 1–4 however, while activity near the expected χ–Capricornid peak has tended to be
slight and up to a day late. Both showers have radiants < 10◦–15◦ west of the Sun at maximum, so cannot be regarded as visual targets even from the southern hemisphere.


α-Centaurids (ACE)

   
     Active: January 28–February 21; Maximum: February 8, 05h30m UT (λo = 319 .◦2);   
     ZHR = variable, usually ~ 6, but may reach 25+;   
     Radiant: α = 210◦, δ = −59◦; Radiant drift: see Table 6;   
     V∞ = 56 km/s; r = 2.0.   
     

In theory, the α-Centaurids are one of the main southern summer high points, from past records
supposedly producing many very bright, even fireball-class, objects (meteors of at least magnitude
−3), commonly with fine persistent trains. However, the average peak ZHR between
1988–2007 was merely 6, albeit coverage has frequently been extremely patchy. Despite this, in
1974 and 1980, bursts of only a few hours’ duration apparently yielded ZHRs closer to 20–30. As
with many southern hemisphere sources, we have more questions than answers at present, nor do
we have any means of telling when, or if, another stronger event might happen. Consequently,
imaging and visual observers are urged to be alert at every opportunity. The radiant is nearly
circumpolar for much of the sub-equatorial inhabited Earth, and is at a useful elevation from
late evening onwards. The Moon will rise between about midnight and 1 a.m. local time around
February 8, but will be just a waning crescent three days past last quarter, so should not be too
great a distraction even late in the night.


γ-Normids (GNO)

   
     Active: February 25–March 22; Maximum: March 14 (λo = 354◦); ZHR = 6;   
     Radiant: α = 239◦, δ = −50◦, Radiant drift: see Table 6;   
     V∞ = 56 km/s; r = 2.4;   
     TFC: α = 225◦, δ = −26◦ and α = 215◦, δ = −45◦ (β < 15◦ S).   
     

For most of their activity, γ–Normid ZHRs seem to be virtually undetectable above the background
sporadic rate. The maximum itself has been reported as quite sharp, and an analysis of
IMO data from 1988–2007 showed an average peak ZHR of ∼ 6 at λo = 354◦, with ZHRs of ∼ 3
visible for four or five days before the maximum only. Limited data means this is uncertain, and
activity may vary somewhat at times, with occasional broader, or less obvious, maxima having
been noted in the past. Results since 1999 have suggested the possibility of a short-lived peak
alternatively between λo ∼ 347◦–357◦, equivalent to 2010 March 7–17, while video and visual
plotting information from the same period agreed on the above radiant position, though this was
different to that suggested earlier for the shower. Post-midnight watching yields better results,
when the radiant is rising to a reasonable elevation from southern hemisphere sites (the radiant
does not rise for many northern ones). The shower badly needs more regular observations, and
March’s waning Moon, new on March 15, means 2010 should be a good year to start - assuming
a peak close to March 14. All observing techniques can be employed.


April to June

Meteor activity picks up towards the April-May boundary, though of the two shower maxima in
late April, only the Lyrids have a short Moon-free observing window. The π-Puppids, maximum
due around 22h UT on April 23, are best-observed before local midnight from the southern
hemisphere, a date which sees a waxing gibbous Moon visible till around 01h from these locations.
Even the η-Aquariids in early May have last quarter Moon to contend with for their broad peak,
centred around May 6. That shower can be observed usefully only from equatorial and southern
hemisphere sites for a few hours before dawn, while from there, the Moon then rises around local
midnight. η-Aquariid activity could be near its highest on its theoretical 12-year cycle still in
2010, however, maybe with ZHRs up to ∼ 85. The minor η-Lyrids at least are largely moonless.
Later in May and throughout June, most of the meteor action switches to the daylight sky, with
six shower maxima expected during this time. Although occasional meteors from the o-Cetids
and Arietids have been claimed as seen from tropical and southern hemisphere sites visually in
past years, ZHRs cannot be sensibly calculated from such observations. For radio observers, the
theoretical UT peaks for these showers are as follows: April Piscids - April 20, 15h; δ-Piscids
- April 24, 15h; ǫ-Arietids - May 9, 14h; May Arietids - May 16, 15h; o-Cetids - May 20, 14h;
Arietids - June 7, 17h; ζ-Perseids - June 9, 17h; β-Taurids - June 28, 16h. Signs of most were
found in radio data from 1994–2007, though some are difficult to define individually because of
their proximity to other radiants. There seems to be a modest recurring peak around April 24,
perhaps due to combined rates from the first three showers listed here, for instance, while the
Arietid and ζ–Perseid maxima tend to blend into one another, producing a strong radio signature
for several days in early to mid June. There are indications these two June shower maxima now
each occur up to a day later than indicated above.

The ANT should be relatively strong, with ZHRs of 3 to 4 found in recent investigations through
till mid April, and again around late April to early May, late May to early June, and late June
to early July. At other times, the ZHR seems to be below ∼ 2 to 3. The radiant area drifts
from south-east Virgo through Libra in April, then across the northern part of Scorpius to
southern Ophiuchus in May, and on into Sagittarius for much of June. For northern observers,
circumstances for checking on any potential June Lyrids are very favourable this year, and
although moonlight circumstances are much poorer for possible June Bo¨otid hunting, the shower
is highlighted below because it may produce detectable activity again this year.


Lyrids (LYR)

   
     Active: April 16–25; Maximum: April 22, 17h UT (λo = 32 .◦32, but may vary - see text);   
     ZHR = 18 (can be variable, up to 90);   
     Radiant: α = 271◦, δ = +34◦; Radiant drift: see Table 6;   
     V∞ = 49 km/s; r = 2.1;   
     TFC: α = 262◦, δ = +16◦ and α = 282◦, δ = +19◦(β > 10◦ S).   
     

The λo = 32 .◦32 timing given above is the ‘ideal’ maximum found in the most detailed
examination of the Lyrids in modern times, published in 2001 by Audrius Dubietis and Rainer
Arlt, drawing on IMO results from 1988–2000. However, the maximum time was found to be
variable from year to year between λo = 32 .◦0–32 .◦45 (equivalent to 2010 April 22, 09h15m to
20h20m UT). Activity was discovered to be variable too. A peak at the ideal time produced
the highest ZHRs, ∼ 23, while the further the peak happened from this, the lower the ZHRs
were, down to ∼ 14. (The last very high maximum occurred outside the examined interval, in
1982 over the USA, when a short-lived ZHR of 90 was recorded.) The mean peak ZHR was 18
over the thirteen years examined. While generally thought of as having a short, quite sharp,
maximum, this latest work revealed the shower’s peak length was inconstant too. Using the
interval that ZHRs were above half the maximum amount, the Full-Width-Half-Maximum time,
a variation of from 14.8 hours (in 1993) to 61.7 hours (in 2000) was detected, with a mean value
of 32.1 hours. The very best rates are normally achieved for just a few hours even so. One other
aspect of the analysis confirmed data from earlier in the 20th century, that occasionally, as their
highest rates occurred, the Lyrids produced a short-lived increase in fainter meteors. Overall,
the unpredictability of the shower in any given year always makes the Lyrids worth watching,
since we cannot say when the next unusual return may take place.
Lyrids are best viewed from the northern hemisphere, but they are visible from many sites north
and south of the equator, and the shower is suitable for all forms of observation. As its radiant
rises during the night, watches can be carried out usefully from about 22h30m local time onwards
from mid-northern sites, but only well after midnight from the mid-southern hemisphere. On
April 22, the waxing gibbous Moon will set between 1 and 2 a.m. for most northern sites (the
later times fall further north), leaving at least a short while before morning twilight begins with
the radiant at a healthy elevation for dark-sky observing. If the ideal maximum time recurs,
it should be best-seen from sites across the eastern half of Asia, but, as already noted, other
maximum times are perfectly possible.


η-Lyrids (ELY)

   
     Active: May 3–12; Maximum: May 9, 07h UT (λo = 48 .◦4); ZHR = 3;   
     Radiant: α = 287◦, δ = +44◦; Radiant drift: see Table 6;   
     V∞ = 44 km/s; r = 3.0;   
     TFC: α = 325◦, δ = +40◦ or α = 285◦, δ = +15◦, and α = 260◦, δ = +30◦ (β > 10◦ S).   
     

This recent introduction to the Working List is associated with Comet C/1983H1 IRAS-Araki-
Alcock, though it appears to be only a weak shower. Most of the data on it so far has been
theoretical, or based solely on imaging results. It needs a lot more data to confirm it can be
definitely observed visually, and if so, just what its parameters may be. The radiant position is
likely to be around the region given above at the presumed maximum, but may be some degrees
from it. The discussion on p.137 of HMO has more information. However, the VID results
suggested significantly different parameters overall, with the shower detected between May 10–
17, reaching a maximum around λo = 50◦ (2010 May 10/11), from a radiant then centred at
α = 291◦, δ = +43◦. The radiant drift remains unconfirmed. Other than more video work,
diligent visual or telescopic plotting will be needed to separate any potential η-Lyrids from the
sporadics. The general radiant area is usefully on-view all night from the northern hemisphere
(primarily), from where the waning crescent Moon will rise too near dawn to cause any problems
around May 8–11.


June Lyrids (JLY)

   
     Active: June 11–21; Maximum: June 16(λo = 85◦); ZHR = variable, 0–5;   
     Radiant: α = 278◦, δ = +35◦;   
     Radiant drift: June 10α = 273◦, δ = +35◦,   
     June 15α = 277◦, δ = +35◦,   
     June 20α = 281◦, δ = +35◦;   
     V∞ = 31 km/s; r = 3.0.   
     

This possible source does not feature in the current IMO Working List of Visual Meteor Showers,
as apart from some activity seen from northern hemisphere sites in a few years during the 1960s
(first seen 1966) and 1970s, evidence for its existence has been virtually zero since. In 1996,
several observers independently reported some June Lyrids, though no definite activity has been
found subsequently. The probable maximum date in 2010 has only a waxing crescent Moon,
yielding perfect viewing conditions for all observers who wish to check for this potential stream.
The radiant may lie a few degrees south of the bright star Vega (α Lyrae), so would be well
on-view throughout the short northern summer nights, but there are discrepancies in its position
in the literature. All suspected visual June Lyrids should be carefully plotted, paying especial
attention to the meteors’ apparent velocities. Confirmation or denial of activity from this source
by imaging techniques would be very useful too.


June Boötids (JBO)

   
     Active: June 22–July 2; Maximum: June 27, 14h30m UT (λo = 95 .◦7), but see text;   
     ZHR = variable, 0–100+;   
     Radiant: α = 224◦, δ = +48◦; Radiant drift: see Table 6;   
     V∞ = 18 km/s; r = 2.2;   
     TFC: α = 156◦, δ = +64◦ and α = 289◦, δ = +67◦ (β = 25◦–60◦ N).   
     

This source was reinstated on the Working List after its unexpected return of 1998, when ZHRs
of 50–100+ were visible for more than half a day. Another outburst of similar length, but with
ZHRs of ~ 20–50 was observed on 2004 June 23, a date before definite activity had previously
been recorded from this shower. Consequently, the shower’s start date was altered to try to
ensure future activity so early is caught, and we encourage all observers to routinely monitor
throughout the proposed activity period, in case of fresh outbursts. Prior to 1998, only three
more probable returns had been detected, in 1916, 1921 and 1927, and with no significant
reports between 1928 and 1997, it seemed likely these meteoroids no longer encountered Earth.
The dynamics of the stream were poorly understood, although recent theoretical modelling has
improved our comprehension. The shower’s parent, Comet 7P/Pons-Winnecke, has an orbit that
now lies around 0.24 astronomical units outside the Earth’s at its closest approach. Its most
recent perihelion passage was in 2008 September. Clearly, the 1998 and 2004 returns resulted
from material shed by the comet in the past which now lies on slightly different orbits to the
comet itself. Dust trails laid down at various perihelion returns during the 19th century seem to
have been responsible for the last two main outbursts. Four similar dust trails are predicted to
encounter the Earth this year, laid down by the comet in 1819, 1825, 1830 and 1836, which may
produce UT maxima around June 24, 03h53m,01h22m, 00h07m and June 23, 22h40m respectively.
Activity is uncertain, but is not expected to be particularly high, so perhaps will be no better
than at the 2004 return. Conditions for checking are very unfavourable from the mid-northern
latitudes where the radiant is best-seen, with full Moon on June 26, aside from the prolonged
– in some places continuous – twilight, but it is important to discover whether activity recurs
at all, and if so when. The radiant is usefully accessible virtually all night, and all observing
techniques can be employed. In terms of the apparently ‘early’ predicted peaks this time, VID
suggested some June Boötids may be visible in most years around June 20–25, but that their
activity was largely negligible except near λo = 92◦ (2010 June 23). Even stranger was that this
activity originated from a radiant about ten degrees south of the visual one found in 1998 and
2004, close to α = 216◦, δ = +38◦.


July to September

The ANT is the chief focus for visual attention during most of July, as its radiant area moves
steadily through eastern Sagittarius, then across northern Capricornus into south-west Aquarius.
Results suggest the Source may not be especially recognisable after the first few days however,
as ZHRs for most of the month seem < 2, and for a time in mid-month even < 1! Activity appears to improve somewhat, with ZHRs ~ 2 to 3, by late July and through the first half of August. Despite the large ANT radiant area overlapping that of the minor α-Capricornids (CAP) in July-August, these ZHR levels may make it more practical to still identify CAP meteors, particularly near the CAP maximum, due around July 30 or 31. That is unlikely to be the case this year though, due to the waning gibbous Moon in late July. The δ-Aquariids (SDA) are strong enough, and the Piscis Austrinids (PAU) have a radiant probably distant enough from the ANT area, that both should still be separable from it too, particularly from the southern hemisphere. Moonlit maxima are due from both around July 28, the PAU possibly on July 29 instead, while VID indicated the SDA peak might fall alternatively around λˆ = 128°, 2010
July 31.

By the best from the major, moonless, Perseids, and the partly Moon-free κ-Cygnid peak in
mid August, ANT ZHRs will likely have dropped back below 2 again, as the radiant tracks on
through Aquarius, and into western Pisces by the α-Aurigid maximum on the August-September
boundary, probably this year peaking around 07h UT on September 1 (with a very problematic
last quarter Moon). The minor September Perseids are moonless for their likely maximum, but
most of the possible very weak δ-Aurigid peak, perhaps between September 24 to October 4,
will be lost to the bright waning Moon. There have been significant discrepancies found in
these showers' details as determined by recent video results, as discussed below. For most of
September, ANT rates continue from their radiant in Pisces, albeit with ZHRs probably no
better than 2–3, but remember that from September 25, Antihelion meteors are no longer to
be recorded as such, as both Taurid showers take over the near-ecliptic shower baton until
late November. For daylight radio observers, the interest of May-June has waned, but there
remain the visually-impossible γ-Leonids (peak due near August 25, 16h UT, albeit not found in
recent radio results), and a tricky visual shower, the Sextantids. Their maximum is expected on
September 27, around 16h UT, but possibly it may occur a day earlier. In 1999 a strong return
was detected at λˆ ~ 186°, equivalent to 2010 September 29, while in 2002, the September 27
peak was not found, but one around September 29–30 was! It seems plausible that several
minor maxima in early October may also be due to this radio shower. The waning gibbous
Moon creates additional difficulties for visual observers hoping to catch some Sextantids in the
pre-dawn of late September, though radiant-rise is less than an hour before sunrise in either
hemisphere.

Perseids (PER)

   
     Active: July 17–August 24;   
     Maximum: August 12, 23h30m to August 13, 02h00m UT (λˆ = 140 .°0–140 .°1), but see text;   
     ZHR = 100;   
     Radiant: α = 48°, δ = +58°;   
     Radiant drift: see Table 6;   
     V∞ = 59 km/s;   
     r = 2.2;   
     TFC: α = 019°, δ = +38° and α = 348°, δ = +74° before 2h local time;   
     α = 043°, δ = +38° and α = 073°, δ = +66° after 2h local time (β > 20° N);   
     IFC: α = 300°, δ = +40°, α = 000°, δ = +20° or α = 240°, δ = +70° (β > 20° N).   
     

The Perseids were one of the most exciting and dynamic meteor showers during the 1990s, with
outbursts at a new primary maximum producing EZHRs of 400+ in 1991 and 1992. Rates from
this peak decreased to ∼ 100–120 by the late 1990s, and in 2000, it first failed to appear. This
was not unexpected, as the outbursts and the primary maximum (which was not noticed before
1988), were associated with the perihelion passage of the Perseids' parent comet 109P/Swift-
Tuttle in 1992. The comet's orbital period is about 130 years, so it is now receding into the
outer Solar System, and theory predicts that such outburst rates should dwindle as the comet
to Earth distance increases. However, predictions suggested 2004–2006 might bring a return of
enhanced rates ahead of the usual maximum, and in 2004 a short, strong peak happened close to
that anticipated pre-peak time. Activity seemed to be roughly normal in 2005 and 2006 (though
the latter was badly moonlit). IMO observations from the last decade (see HMO p. 145) showed
the timing of the mean or 'traditional' broad maximum varied between λˆ ~ 139 .°8 to 140 .°3,
equivalent to 2010 August 12, 18h30m to August 13, 07h00m UT, while the shorter, enhanced
filamentary peaks all occurred between λˆ ~ 139 .°44 to 140 .°55, 2010 August 12, 09h30m to
August 13, 13h30m UT. Recent work implies only the 'traditional' peak is liable to recur in 2010
(most likely near the nodal crossing time given in the table above), but observers should be
aware of these additional timings as possibilities, and plan their efforts accordingly, just in case!

New Moon on August 10 creates perfect viewing conditions across the peak this year. The
shower is best-observed from mid-northern latitudes, from where the Perseid radiant is usefully
observable from 22h–23h local time onwards, gaining altitude throughout the night. The nearnodal
part of the 'traditional' maximum interval would be best-viewed from Europe and North
Africa east to central Asia, assuming it happens as expected. All forms of observing can be
carried out on the shower. For example, video data has been used in recent IMO analyses to
clarify and refine the radiant position for the shower - and to confirm that occasional visual
suspicions the radiant may be multiple were almost certainly only illusory. The only negative
aspect to the shower is the impossibility of covering it from the bulk of the southern hemisphere.


κ-Cygnids (KCG)

   
     Active: August 3–25;   
     Maximum: August 18(λˆ = 145°);   
     ZHR = 3;   
     Radiant: α = 286°, δ = +59°;   
     Radiant drift: see Table 6;   
     V∞ = 25 km/s; r = 3.0;   
     IFC: α = 330°, δ = +60° and α = 300°, δ = +30°(β > 20° N).   
     

The waxing gibbous Moon will set between roughly 23h to midnight local time for the expected
κ-Cygnid peak this year at northern hemisphere sites, from where the shower is chiefly accessible.
Its r-value suggests telescopic and video observers may benefit from the shower's presence, but
visual and photographic workers should note that occasional slow fireballs from this source have
been reported too. Although previously suggested as having an almost stationary radiant, due
to its close proximity to the ecliptic north pole in Draco, recent IMO video data seem to have
contradicted that, but it is not clear why as yet, nor is the proposed greater radiant drift yet
confirmed. There has been some suggestion of a variation in kappa-Cygnid rates at times too,
perhaps coupled with a periodicity in fireball sightings, but more data are needed on a shower
that is often ignored in favour of the major Perseids during August.

Near-Auriga Showers


September Perseids (SPE)

   
     Active: September 5–17;   
     Maximum: September 9, 15h UT (λˆ = 166 .°7);   
     ZHR = 5;   
     Radiant: α = 60°, δ = +47°;   
     Radiant drift: see Table 6;   
     V∞ = 64 km/s;   
     r = 3.0;   
     TFC: α = 052°, δ = +60°; α = 043°, δ = +39° and α = 023°, δ = +41° (β > 10° S).   
     

Recent IMO analyses in HMO and VID have revealed a number of significant problems with the
parameters for the three supposedly established near-Auriga showers active at times between
late August and October, the α- (AUR) and δ-Aurigids (DAU), and the September Perseids. For
some time, these essentially northern hemisphere showers have been suspected of simply being
(perhaps the more active) part of a series of poorly-observed sources with radiants around Aries,
Perseus, Cassiopeia and Auriga during the northern early autumn. The main discrepancies to
what was previously thought were as follows.
VID found the AUR active from August 30 to September 3, not August 25 to September 8,
with a radiant at maximum around α = 68°, δ = +47°, not α = 84°, δ = +42°. The radiant
also showed a much smaller daily drift, in a different direction, than currently assumed for the
shower.

The SPE radiant at maximum, as noted in the table above, supposed to be near α = 60°,
δ = +47°, could not be located at all in the VID data. Instead, a radiant active from September 5
to 13, located at α = 48°, δ = +39° at its strongest on λˆ = 167° (2010 September 9) was found,
a location remarkably similar to that which produced an unexpected outburst of comparablyswift,
bright meteors on 2008 September 9 (whose radiant was centred somewhere between
α = 47 .°5 to 49°, δ = +38° to +43° then). That source seemed to have been the formerly-littleknown
ε-Perseid minor shower (radiant around α = 50°, δ = +39°) – though its radiant location
is actually closer to β or ρ Persei than ε!

For the DAU, the HMO ZHR graph on p. 151 showed no peak at all. There was marginally
higher activity (ZHRs just ~ 2, even so) from λˆ ~ 176° to 181°, not the previously-detected
vague maximum around λˆ ~ 181° to 191°. Worse still, the VID results were able to define DAU
activity only from October 6–12 (previously-assumed to last from September 18 to October 10),
with a loose peak at λˆ ~ 196° (2010 October 9), from a radiant near α = 106°, δ = +46°,
substantially southeast of the expected one. Rather like the visual results, no clear activity
profile was definable in the video reports.

Consequently, although the previous parameters, with a few small amendments, have been retained
here, it is clear these showers need a thorough re-examination, with fresh results to
complement all the extant data, to help determine exactly what is happening in this area of sky
at this time. Visual plotting has apparently struggled in the past, assuming the latest video
results can be relied upon, so imaging and telescopic data would seem to offer the best hope
of resolution. There is already the telescopic β-Cassiopeid shower suspected of being active simultaneously
to several of the September Auriga-Perseus showers, for example. Unfortunately,
any one year's data cannot be sufficient to cover everything that may be happening (aside from
one-off events like the occasional strong AUR outbursts, or the unexpected possible ε-Perseid
outburst in 2008), thus the better option would be to rely less on trying to observe only the
proposed maxima, and attempt to observe as frequently as possible whenever the Moon and
weather cooperate between the last week of August and the first fortnight in October, remembering
that all the radiants in this area of sky are best-viewed only after about 23h–00h local
time north of the equator.

October to December

A mixed final quarter concludes the year, with not all the more active showers reasonably
moonless, nor all the minor sources. In October, the major Orionids (around October 21) and
minor Leonis Minorids (probably on October 24) have maxima too close to full Moon for any
dark-sky observations, though in November, only the usually-minor α-Monocerotids lose out
completely that way (peak due at 21h35m UT on November 21 – full Moon is only four hours
earlier!). The first half of December has showers that mostly survive the Moon, the second half
mostly does not, which means the loss of the Ursid and Comae Berenicid peaks. The usual
Ursid maximum is expected between 19h30m to 22h00m UT on December 22, but HMO p. 176
indicated a stream filament peak was likely earlier on December 22, centred at 13h02m UT, with
ZHRs of ~ 23 anticipated. The publication of VID has enabled a clarification of the confusion
over the Coma showers in the 2008 and 2009 Shower Calendars. Analyses of recent video data
collected over several years reveal only the CBE radiant. It is detectable between December 5
and end-January (λˆ = 253°–311°) with a weak maximum near λˆ = 268° (December 20) with a
ZHR of ~ 5. Although the 'old' Comae Berenicids, COM, cannot be found from recent data, we
add them to the list as an open issue for the current working list. The ANT starts the quarter
effectively inactive in favour of the Taurids, but it resumes from November 26, as the Taurids
fade away, from a radiant centre position in eastern Taurus. During December, this centre tracks
across southern Gemini, and although analyses indicate its likely ZHRs are < 2 for most of this time, some of this apparent inactivity may be due to the strength of the Geminids very close-by to the north during part of December, plus also the minor Monocerotids a little way to its south simultaneously.

October 5/6 meteors: Short-lived video outbursts were recorded in 2005 and 2006 by European
observers, with activity from a north-circumpolar radiant near the 'tail' of Draco, around α ∼
165°, δ ∼ +78°, on October 5/6. The 2005 event (only) was recorded very weakly by radio, but
no visual results confirmed either occurrence, and no recurrence was reported in 2007 or 2008.
The 2009 repeat time was still to come when this was written. As the 2005–06 events happened
between λˆ ∼ 192 .°55–192 .°64, this would be equivalent to 2010 October 6, 01h30m–03h40m UT,
a date with no Moon (new on October 7). The meteors showed an atmospheric velocity of
~ 45–50 km/s. If the active interval keeps to the same time, it would be best-observed by video
from eastern North America eastwards across Europe to central Asia.


Draconids (DRA)

   
     Active: October 6–10;   
     Maximum: October 8, 22h45m UT (λˆ = 195 .°4, but see below);   
     ZHR = periodic, up to storm levels;   
     Radiant: α = 262°, δ = +54°;   
     Radiant drift: negligible;   
     V∞ = 20 km/s;   
     r = 2.6;   
     TFC: α = 290°, δ = +65° and α = 288°, δ = +39° (β > 30° N).   
     

The Draconids are primarily a periodic shower which produced spectacular, brief, meteor storms
twice last century, in 1933 and 1946, and lower rates in several other years (ZHRs ~ 20–500+).
Most detected showers were in years when the stream's parent comet, 21P/Giacobini-Zinner,
returned to perihelion, as it did last in 2005 July. Its orbital period is currently about 6.6 years.
In 2005 October, a largely unexpected outburst happened near the comet's nodal crossing time,
around λˆ = 195 .°40–195 .°44, probably due to material shed in 1946. Visual ZHRs were ∼ 35,
though radar detections suggested a much higher estimated rate, closer to ∼ 150. The peak was
found in radio results too, but it did not record especially strongly that way. Outlying maximum
times from the recent past have spanned from λˆ = 195 .°075 (in 1998; EZHRs ~ 700), equivalent
to 2010 October 8, 14h55m UT, through the nodal passage time above, to λˆ195 .°63–195 .°76
(a minor outburst in 1999, not a perihelion-return year; ZHRs ~ 10–20), equating to 2010
October 9, 04h20m to 07h30m UT. The radiant is circumpolar from many northern hemisphere
locations, but is highest during the first half of the night in early October. New Moon on
October 7 makes this a perfect year to check for any activity, though none is anticipated until
2011 October, a little ahead of the comet's next return. Draconid meteors are exceptionally slowmoving,
a characteristic which helps separate genuine shower meteors from sporadics accidentally
lining up with the radiant.


ǫ-Geminids (EGE)

   
     Active: October 14–27;   
     Maximum: October 18(λˆ = 205°);   
     ZHR = 3;   
     Radiant: α = 102°, δ = +27°;   
     Radiant drift: see Table 6;   
     V∞ = 70 km/s; r = 3.0;   
     TFC: α = 090°, δ = +20° and α = 125°, δ = +20°(β > 20° S).   
     

A weak minor shower with characteristics and activity nearly coincident with the Orionids, so
great care must be taken to separate the two sources by instrumental techniques – especially video
or telescopic work – or visual plotting. The waxing gibbous Moon sets between about 1h30m and
2h30m a.m. local time for northern to southern mid-latitudes (later timings further south), so
presenting a good opportunity to obtain more data on them from either hemisphere. Northern
observers have a radiant elevation advantage, as this area of sky can be usefully accessed here
from about midnight onwards. Note the parameters have been questioned by the latest IMO
data. HMO p. 154 suggested the visual peak may fall closer to λˆ ~ 208°–209° (2010 October 21–
22), though ZHRs remained above 2 from roughly October 18–23, while VID found the shower
was active between October 5–22 with a maximum at λˆ = 200° instead (October 14).

Taurids


Southern Taurids (STA)

   
     Active: September 25–November 25;   
     Maximum: November 5 (λˆ = 223°);   
     ZHR = 5;   
     Radiant: α = 52°, δ = +15°;   
     Radiant drift: see Table 6;   
     V∞ = 27 km/s; r = 2.3;   
     TFC: Choose fields on the ecliptic and ∼ 10° E or W of the radiants (β > 40° S).   
     


Northern Taurids (NTA)

   
     Active: September 25–November 25;   
     Maximum: November 12 (λˆ = 230°);   
     ZHR = 5;   
     Radiant: α = 58°, δ = +22°;   
     Radiant drift: see Table 6;   
     V∞ = 29 km/s; r = 2.3;   
     TFC: as Southern Taurids.   
     

These two streams form part of the complex associated with Comet 2P/Encke. Defining their
radiants is best achieved by careful visual or telescopic plotting, or imaging recordings, since they
are large and diffuse. For shower association, each radiant should be considered an oval area of
~ 20° × 10°, α × δ, centred on the radiant position for any given date. Their activity clearly
dominates the ANT's during the northern autumn, so much so that the ANT is considered
inactive while they are present. The brightness and relative slowness of many of these shower
meteors makes them ideal targets for still-imaging, while these factors coupled with low, steady,
combined Taurid rates make them excellent subjects for newcomers to practice their plotting
techniques on. The activity of both showers produces an apparently plateau-like maximum for
about ten days in early November, and they have a reputation for producing some excellently
bright fireballs at times, although seemingly not in every year. Meteoricist David Asher's studies
have indicated that increased Taurid fireball rates probably result from a 'swarm' of larger
particles within the Taurid stream, which in 2005 most recently produced a lot of, occasionally
very brilliant, fireballs, and enhanced combined ZHRs of ~ 10–15 that persisted from about
October 29 to November 10. Another 'swarm' return in 2008 gave a less-clear signature, with
little or no significant increase in fireball numbers, but probably better than normal Taurid activity,
ZHRs ~ 10–20, for a few days in late October and early November. No 'swarm' return is
predicted for this year. November's new Moon favours coverage of the whole probable maximum
spell however, and with near-ecliptic radiants, all can observe these streams. Northern hemisphere
observers are somewhat better-placed, as here suitable radiant zenith distances persist for
much of the night. Even from the southern hemisphere, a good 3–5 hours' watching around local
midnight is possible with Taurus well above the horizon. The VID data largely confirmed the
lengthy active periods for both sources, but suggested the STA might show two minor maxima,
around October 31 and November 8, and the NTA three, near October 3, November 9 and 16.
Note the first STA and last NTA video peaks originated from radiants respectively some way
north and northeast of the expected positions at those times.


Leonids (LEO)

   
     Active: November 10–23;   
     Maximum: November 17, 21h15m UT (nodal crossing at λˆ = 235 .°27), but see below;   
     ZHR = 20?;   
     Radiant: α = 152g, δ = +22°;   
     Radiant drift: see Table 6;   
     V∞ = 71 km/s;   
     r = 2.5;   
     TFC: α = 140°, δ = +35° and α = 129°, δ = +06°(β > 35° N);   
     or α = 156°, δ = −03° and α = 129°, δ = +06°(β < 35° N).   
     IFC: α = 120°, δ = +40° before 0h local time (β > 40° N);   
     α = 120°, δ = +20° before 4h local time and α = 160°, δ = 00° after 4h local time (β > 00° N);   
     α = 120°, δ = +10° before 0h local time and α = 160°, δ = −10°(β < 00° N).   
     

The most recent perihelion passage of the Leonids' parent comet, 55P/Tempel-Tuttle, in 1998
may be more than a decade ago now, but the shower's activity has continued to be fascinatingly
variable from year to year recently. This year is not expected to produce enhanced rates, but
theoretical work by Mikhail Maslov suggested peak ZHRs of ~ 20 might occur around November
17, 15h UT instead of at the usual nodal crossing time above. ZHRs from that later possible
peak are likely to be ~ 10–20. The waxing gibbous Moon will not set until 2 to 3 a.m. local
time on November 17 across the mid-latitude globe (later moonsets for places further north). As
the Leonid radiant rises usefully only around local midnight (or indeed afterwards south of the
equator), there will still be plenty of dark-sky time between moonset and the onset of morning
twilight to observe whatever happens this year. The ~ 15h UT peak timing would coincide with
moonless skies from the extreme east of Russia east to Alaska and places at similar longitudes
on the Pacific Ocean. The ~ 21h UT timing would favour locations at comparable longitudes
to central-eastern Asia, from roughly India east to Japan/western Australia. Other possible
maxima are not excluded, and observers should be alert as often as conditions allow throughout
the shower, in case something unexpected happens. All observing techniques can be usefully employed.
VID indicated Leonid activity might be detected that way from about November 8–28,
though this remains unconfirmed visually.


Phoenicids (PHO)

   
     Active: November 28–December 9;   
     Maximum: December 6, 15h30m UT (λˆ = 254 .°25);   
     ZHR = variable, usually none, but may reach 100;   
     Radiant: α = 18°, δ = −53°;   
     Radiant drift: see Table 6;   
     V∞ = 18 km/s; r = 2.8;   
     TFC: α = 040°, δ = −39° and α = 065°, δ = −62°(β < 10° N).   
     

Only one impressive Phoenicid return has been reported so far, that of its discovery in 1956,
when the EZHR was probably ~ 100, possibly with several peaks spread over a few hours.
Three other potential bursts of lower activity have been reported, but never by more than one
observer, under uncertain circumstances. Reliable IMO data has shown recent activity to have
been virtually nonexistent. This may be a periodic shower however, and more observations
of it are needed by all methods. From the southern hemisphere (only), the Phoenicid radiant
culminates at dusk, remaining well on view for most of the night. New Moon on December 5
creates ideal viewing circumstances this year.


Puppid-Velids (PUP)

   
     Active: December 1–15;   
     Maximum: December ~ 7(λˆ ~ 255°);   
     ZHR ~ 10;   
     Radiant: α = 123°, δ = −45°;   
     Radiant drift: see Table 6;   
     V∞ = 40 km/s;   
     r = 2.9;   
     TFC: α = 090° to 150°, δ = −20° to −60°;   
     choose pairs of fields separated by about 30° in α, moving eastwards as the shower progresses (β < 10° N).   
     

This is a very complex system of poorly-studied showers, visible chiefly to those south of the
equator. Up to ten sub-streams have been identified, with radiants so tightly clustered, visual
observing cannot readily separate them. Imaging or telescopic work would thus be sensible, or
very careful visual plotting. The activity is so badly-known, we can only be reasonably sure
that the higher rates occur in early to mid December, coincident with the dark of the Moon
this year. Some of these showers may be visible from late October to late January, however.
Most Puppid-Velid meteors are quite faint, but occasional bright fireballs, notably around the
suggested maximum here, have been reported previously. The radiant area is on-view all night,
but is highest towards dawn.


Monocerotids (MON)

   
     Active: November 27–December 17;   
     Maximum: December 9 (λˆ = 257°);   
     ZHR = 2;   
     Radiant: α = 100°, δ = +08°;   
     Radiant drift: see Table 6;   
     V∞ = 42 km/s; r = 3.0;   
     TFC: α = 088°, δ = +20° and α = 135°, δ = +48° (β > 40° N);   
     or α = 120°, δ = −03° and α = 084°, δ = +10° (β < 40° N).   
     

HMO (p. 169) confirmed only low, but persistent, rates are likely from this very minor source,
with little clear sign of a maximum, making accurate visual plotting, telescopic or video work
essential, particularly because its meteors are normally faint. The shower's details, even including
the radiant position, are rather uncertain. VID suggested there may be actually two minor
radiants involved, the other about 10° northwest of that given here, active from November 17 to
December 5, at maximum near λˆ = 246° (November 28). That radiant then was at α = 91°,
δ = +15°. The MON parameters suggested by VID were slightly different to those here too, with
activity found between December 6–19, and a maximum at λˆ = 254° (December 6), right at the
beginning of its reported activity, from a radiant nearly coincident with that for the December 9
MON one. In addition, telescopic results have suggested a later maximum, around λˆ ∼ 264°
(December 16), from a radiant at α = 117°, δ = +20°. Assuming a constant radiant drift for the
shower that gave November's VID Monocerotid peak, beyond the period it was detected, might
suggest it is related to this telescopic radiant, and perhaps that, if only one Monocerotid shower
is involved overall, it has a dual, northern and southern, radiant. December's new Moon leaves
plenty of dark-sky observing time for most of these proposed peaks, given that the radiant area
is on-show virtually all night, culminating at about 1h30m local time. The December 16 peak
would be less favourable, but waxing gibbous moonset then will still leave several hours before
dawn for observing.


σ-Hydrids (HYD)

   
     Active: December 3–15;   
     Maximum: December 12(λˆ = 260°);   
     ZHR = 3;   
     Radiant: α = 127°, δ = +02°;   
     Radiant drift: see Table 6;   
     V∞ = 58 km/s;   
     r = 3.0;   
     TFC: α = 095°, δ = 00° and α = 160°, δ = 00° (all sites, after midnight only).   
     

Although first detected in the 1960s by photography, σ-Hydrids are typically swift and faint, and
rates are generally very low, close to the visual detection threshold. Since their radiant, a little
over 10° east of the star Procyon (α Canis Minoris), is near the equator, all observers can cover
this shower. The radiant rises in the late evening hours, but is best viewed after local midnight,
so this is a perfect year for them, with a waxing crescent Moon setting around midnight on
December 12. Recent IMO data used in the HMO p. 170 graph indicated the maximum may
happen near λˆ ∼ 262° (December 14) however, while VID implied a peak closer to λˆ ~ 257°
(December 9), and that HYD activity may be present from November 30 to December 18, or
perhaps even till December 24. Moon-free watching should be practical for at least part of their
better-visible time on all the potential maximum nights. The shower would benefit from visual
plotting, telescopic or additional video work to pin it down more accurately.


Geminids (GEM)

   
     Active: December 7–17;   
     Maximum: December 14, 11h UT (λˆ = 262 .°2);   
     ZHR = 120;   
     Radiant: α = 112°, δ = +33°;   
     Radiant drift: see Table 6;   
     V∞ = 35 km/s;   
     r = 2.6;   
     TFC: α = 087°, δ = +20° and α = 135°, δ = +49° before 23h local time,   
     α = 087°, δ = +20° and α = 129°, δ = +20° after 23h local time (β > 40° N);   
     α = 120°, δ = −03° and α = 084°, δ = +10°(β < 40° N).   
     IFC: α = 150°, δ = +20° and α = 060°, δ = +40°(β > 20° N);   
     α = 135°, δ = −05° and α = 080°, δ = 00°(β < 20° N).   
     

One of the finest, and probably the most reliable, of the major annual showers presently observable,
whose peak this year falls just after first quarter Moon. Moonset is within half an hour of
local midnight across the globe for the maximum, while the Geminid radiant culminates around
02h local time. Well north of the equator, the radiant rises at about sunset, reaching a usable
elevation from the local evening hours onwards. In the southern hemisphere, the radiant appears
only around local midnight or so. Even from more southerly sites, this is a splendid stream of
often bright, medium-speed meteors, a rewarding event for all observers, whatever method they
employ. The peak has shown slight signs of variability in its rates and timing in recent years,
with the more reliably-reported maxima during the past two decades (data from HMO, p. 171)
all having occurred within the range λˆ = 261 .°5 and 262 .°4, equivalent to December 13, 18h40m
to December 14, 16h00m UT this year. Stronger activity has been found to begin occasionally as
early as λˆ = 260 .°8 (December 13, 02h UT) and to persist until λˆ = 262 .°5 (December 14, 18h).
VID suggested Geminid activity was detectable from November 30 to December 18, the earlier
start for the shower rather unexpected from past visual investigations. The tabulated predicted
timing above coincides with post-moonset skies across most of North America on December 14,
but with the likelihood of near-peak rates persisting for almost a day, most of the world should
have the chance to see something of the Geminids' best under dark skies. Some mass-sorting
within the stream means fainter telescopic meteors should be most abundant almost 1° of solar
longitude (about one day) ahead of the visual maximum, with telescopic results indicating such
meteors radiate from an elongated region, perhaps with three sub-centres. Further results on
this topic would be useful.