Effective number of meteors in reduced field of view

Debora Pavela & Miroslav Živanović Petnica Meteor Group, Petnica Science Center, Valjevo, Serbia e-mails: *debbiepavela2@gmail.com; miroslavzivanovic6@gmail.com*

International Meteor Conference

27 - 30 August 2015, Mistelbach - Austria

Introduction to counting problem

- Meteors are not point-like objects; they have a certain dimension.
- Position of meteor trail is not strictly defined by one point → effective number of meteors in the field of view is not equal to total number of observed meteors.
- The effective number of meteors can be described as a number of meteor trail midpoints inside the field of view.

Introduction to counting problem

- The observer does not know the position of midpoints for trails that are partially inside the field of view.
- Four classes of seen meteors:

- "B" with beginning only
- "T" with termination only
- "E" entire trail
- "P" passing across
- Analytic approach is applied for computing correction coefficients for every class of seen meteors (Kresáková, 1977.).

- Approximations and assumptions in analytical approach.
 - 1)Sky is approximated as a two-dimensional plane
 - 2)No preferred orientation of trails direction \rightarrow meteors does not belong to shower.

3)Trails of the equal length

• Differences between simulation and analytical approach:

2) Meteor shower orientations of trails by introducing point-like radiant.

3) Linear dependence between meteor length and its distance from radiant.

- Trail midpoints are generated randomly.
- Simplest linear dependencede between length of trail and its distance from radiant:

$L=\omega\psi$

 ω – parameter of length

 ψ – distance between midpoint of trail and radiant

 Set of geometrical requirements for recognizing meteors of certain classes:

$$(x_1 - x_f)^2 + (y_1 - y_f)^2 < (D/2)^2 \qquad (1)$$

$$(x_2 - x_f)^2 + (y_2 - y_f)^2 < (D/2)^2 \qquad (2)$$

 $(x_1 - x_f)^2 + (y_1 - y_f)^2 < L^2 + (D/2)^2 \qquad (3)$

$$(x_2 - x_f)^2 + (y_2 - y_f)^2 < L^2 + (D/2)^2 \qquad (4)$$

 $(x_c - x_f)^2 + (y_c - y_f)^2 < (D/2)^2 \qquad (5)$

Details at poster session

• Correction coefficients are calculated as:

 $K_{i} = \frac{N_{c}}{N_{tot}}$ $N_{c} - \text{number of seen}$ meteors with midpoints in the field of view; N_{tot} - number of all meteors seen for giving class.

Illustration of simulation setting

Comparing results with analytic approach

Table 1: Results of simulation in comparison with analytically computed results.

D/L	E_c	σ_{E_c}	E_c (Kresáková, 1977.)	Ratio of P class meteors to total. (%)
0.1	13.65	5	13.73	85.4
0.2	7.33	0.9	7.37	72.9
0.3	5.25	0.4	5.24	61.9
0.5	3.55	0.2	3.55	43.6
1	2.27	0.04	2.27	12
2	1.64	0.02	1.64	1.7
3	1.424	0.008	1.42	0.56
5	1.255	0.004	1.25	0.14
10	1.127	0.002	1.13	0.02

By E_c and σ_{Ec} are denoted size of effective field of view and standard deviation of its distribution computed in simulation.

Results of simulation

Correction coefficients dependence of radiant distance and length parameter

Contribution of entire meteors

Contribution of meteors passing across the field of view

Contribution of meteors with beginnings only

Contribution of meteors with terminations only

Effective field of view for entire meteors

Suggestion instead of conclusion

- Importance of research increases with growing on meteor camera networks.
- Applicability in other fields (biology: counting species in field of view of microscopes).

Suggestions for further work are welcomed at the poster session.

Thank you!