Low-cost Meteor Radiometer

Denis Vida, Renato Turčinov, Damir Šegon, Emil Siladi
Croatian Meteor Network
Introduction – radiometric observations?

• First mention in 2001 (Spurný, et al.)

COMMON GROUND-BASED OPTICAL AND RADIOMETRIC DETECTIONS WITHIN CZECH FIREBALL NETWORK.

Pavel Spurný(1), Richard E. Spalding(2), Cliff Jacobs(2)

(1) Astronomical Institute, Ondřejov Observatory, 251 65 Ondřejov, Czech Republic.
(2) Sandia National Laboratories, Post Office Box 5800, Albuquerque, New Mexico 87185-0978, USA

Email: spurny@asu.cas.cz

ABSTRACT

This paper describes first results of common detections of fireballs by photographic cameras in Czech Fireball Network (CFN) and the new radiometric systems equipped with sensors with very high time and intensity resolutions placed at two stations of this network, Ondřejov Observatory and Kunžak. Since August 1999, when we started regular operation of two radiometric systems, we have detected 17 different fireballs. Eleven of them were recorded simultaneously by photographic cameras, another six were only single radiometric detections as radiometers can detect meteoric events also under cloudy conditions. From two most suitable common events we performed calibration of radiometers and we determined their sensitivity. We found significant differences between lightcurves of slow and fast meteors recorded by these techniques, and finally, we found substantial differences in shapes of lightcurves for fireballs belonging to the same meteor.

Introduction – radiometric observations?

• First mention in 2001 (Spurný, et al.)

„... radiometric systems equipped with sensors with very high time and intensity resolutions...”
„... Record total brightness of the sky with sample rate 1200 s\(^{-1}\)...”
What is a radiometer?

- High time-resolution photometer which measures the sky brightness
What is a radiometer?

- High time-resolution photometer which measures the sky brightness
Why apply them to meteor research?

- Very fine time resolution
 - Ultimate fireball fragmentation modelling data!
- Unknown high frequency phenomena

Building from scratch

• Sensor
 • Choice of sensor (photodiode type and choice)
 • Sensitivity (10⁻⁵ lux)
 • Noise

• Data acquisition
 • Sampling frequency (500 Hz, several kilohertz?)
 • Precision (16-bit, 24-bit?)
 • Acquisition device throughput?

• Cost!
16 bits
500s\(^{-1}\) sample rate
Testing - Frequency characteristics

- Tested with $f = 83$Hz square wave signal
- 3rd harmonic at $3f = 249$ Hz
Testing - Sensitivity

- New Moon, 6° above horizon, -8 magnitude
- Light pollution

Lightcurve

Covered moonlight with hand
Testing - Sensitivity

- New Moon, 6° above horizon, -8 magnitude
- Light pollution

Barely visible distant lightning reflected on the clouds
Observations

• Višnjan – August 3
 • No fireballs
• Pula – August 8
 • Light pollution, no fireballs
Observations

• Platak – August 12
 • No light pollution, ideal conditions
 • Recording only 1 hour on notebook battery
Conclusion

• No results so far – More testing!
• Need better observing conditions
• All-sky camera next to the radiometer
• Improve sampling frequency - several kHz
• Improve bit precision – 24-bits
• Improve sensitivity?

• Waiting for a big fireball!
Highlights

What I want you to remember:
• We need radiometers – unknown high frequency phenomena
• They help at fireball modelling

What I want you to do:
• Build your own radiometer (details in the proceedings), test it!
• Improve and share!
Thank you for your attention!

Questions?