

Leibniz-Institut für Astrophysik Potsdam

Daytime Meteor Showers

Jürgen Rendtel

Outline

- Motivation
- Meteor shower radiants General sources, known showers
- Current data Activity level? Activity period? Shower parameter?
- Observing possibilities & proposal
- Conclusions

Motivation: why daytime showers?

Shower Calendar 2014

Shower	Activity	Max	λ_{\odot}	Radiant		Best observed		Rate
		Date	2000	α	δ	$50^{\circ}\mathrm{N}$	$35^\circ\mathrm{S}$	
Cap/Sagittariids	Jan 13–Feb 04	Feb 01*	312 ?5	299°	-15°	$11^{h} - 14^{h}$	$09^{h}-14^{h}$	Medium*
χ -Capricornids	Jan 29–Feb 28	Feb 13*	$324^{\circ}7$	315°	-24°	$10^{\rm h}{-}13^{\rm h}$	$08^{h}-15^{h}$	Low*
Piscids (Apr)	Apr 08–Apr 29	Apr 20	30°3	7°	$+07^{\circ}$	$07^{\rm h}$ – $14^{\rm h}$	$08^{h}-13^{h}$	Low
δ -Piscids	Apr 24–Apr 24	Apr 24	$34^{\circ}{2}$	11°	$+12^{\circ}$	$07^{\rm h}$ – $14^{\rm h}$	$08^{\rm h}{-}13^{\rm h}$	Low
ε -Arietids	Apr 24–May 27	May 09	48 . 7	44°	$+21^{\circ}$	$08^{h} - 15^{h}$	$10^{\rm h}{-}14^{\rm h}$	Low
Arietids (May)	May 04-Jun 06	May 16	55°5	37°	$+18^{\circ}$	$08^{h} - 15^{h}$	$09^{\rm h}{-}13^{\rm h}$	Low
o-Cetids	May 05–Jun 02	May 20	59°3	28°	-04°	$07^{\rm h}$ – $13^{\rm h}$	$07^{\rm h}$ – $13^{\rm h}$	Medium*
Arietids	May 22–Jul 02	Jun 07*	76 ?7	44°	$+24^{\circ}$	$06^{h} - 14^{h}$	$08^{h}-12^{h}$	High
ζ -Perseids	May 20–Jul 05	Jun 09*	78 .6	62°	$+23^{\circ}$	$07^{h} - 15^{h}$	$09^{\rm h}-13^{\rm h}$	High
β -Taurids	Jun 05-Jul 17	Jun 28	96 ?7	86°	$+19^{\circ}$	$08^{h}-15^{h}$	$09^{h}-13^{h}$	Medium
γ -Leonids	Aug 14–Sep 12	Aug 25	$152^{\circ}2$	155°	$+20^{\circ}$	$08^{h} - 16^{h}$	$10^{h}-14^{h}$	Low*
Sextantids	Sep 09-Oct 09	Sep 27*	$184^{\circ}3$	152°	00°	$06^{h}-12^{h}$	$06^{\rm h}-13^{\rm h}$	$Medium^*$

Discussion while preparing the 2015 Calendar:

- data stored in IAU MDC which shower do we speak about?
- detection, activity level and periods uncertain
- profiles from radio (FS) and radar (BS) available?

... of sporadic meteors

CMOR radar observations, Campbell-Brown, 2004

Approx. 70° east of Apex

V 11..45 km/s (peak ~20 km/s)

Known daytime showers

Data stored in IAU MDC

Most cases only original detection papers listed (1950s-1970s)

Example: 171 ARI

Clegg, Hughes, Lovell (1947)

Almond (1951) - orbits

Sekanina (1976)

Recent studies - based on radar data

Difference in meteoroid sizes: FS ~ visual/video, BS much smaller

Brown et al., 2008 ff. analyses of CMOR

Janches et al., 2013 – southern hemisphere SAAMER data

Campbell-Brown, 2004: ARI June 08, ZHR ~ 200, r = 2.75

Known daytime showers

Data stored in IAU MDC

Most cases only original detection papers listed (1950s-1970s)

Example: 171 ARI (Daytime Arietids)

Similarity Daytime Arietids - comets Marsden group

Marsden group – sunskirters, perihel 6-15 RO

complex of: Marsden group comets (~ 5.5 years orbital period)

96P/Machholz

Daytime Arietids (1.6-2.3 years period), δ Aquariids

(QUA + 2003EH1 ?)

(Kracht et al., 2002, Marsden 2004, Sekanina&Chodas 2005, Jenniskens 2012)

Known daytime showers

Data stored in IAU MDC

Most cases only original detection papers listed (1950s-1970s)

Example: 221 DSX (Daytime Sextantids)

Phaethon – Geminid – complex (Ohtsuka et al., 2006; Ryabova et al., 2014)

"medium activity" – from Weiss (1960)

Recent data: Galligan & Baggaley (2002) – AMOR radar

Various peaks Sep 27-30,

probably over a longer period / extending into early October

Data stored in IAU MDC

Most radiants of daytime showers 5-25 deg west of the Sun

Largest elongations:

293 DCE (o Cetids) / 152 NOC (N ω Cetids) in May	31 / 38 deg
171 ARI (Arietids)	35 deg
221 DSX (Sextantids)	33 deg

171 ARI and 221 DSX – activity level medium-high (Cetids: low)

Promising for combined observations to calibrate methods

Next: some details

Radio and radar data

Analyses necessary

Sugimoto published profiles for major showers and some events

171 ARI early June

221 DSX end September

Problem: how much can be seen?

Optical data?

Figure 5: Identified summer meteor showers. Colour represents number of members of a shower, while the size represents D value based on the similarity measure between the mean orbital parameters of a cluster and linked with it the IAU MDC meteor shower (column 12 and 13 in Table 1) respectively).

Optical data?

Analyses of EDMOND data (Rudawska et al., 2014) include 221 DSX

Figure 6: Identified autumn meteor showers. Colour represents number of members of a shower, while the size represents D value based on the similarity measure between the mean orbital parameters of a cluster and linked with it the IAU MDC meteor shower (column 12 and 13 in Table 11 respectively).

Optical data?

171 ARI early June

Radiant 10 deg (twilight) ZHR 10: n=2 (LM 6.5) n=1 (LM 5.5) ZHR 100: n=20 (LM 6.5) n= 8 (LM 5.5)

Here: 30 deg N, 0430 h LT

Optical data?

221 DSX end September

slightly better (twilight) Radiant ~ 10 deg ZHR 10: n=2 (LM 6.5) n=1 (LM 5.5) ZHR 50: n=10 (LM 6.5) n= 4 (LM 5.5)

Proposal

Comprehensive data set

Target: 221 DSX

Optical data, including

video (add to radiant list) visual (info to observers) Both restricted to ~1hr/night

Radio data

Aim:

Calibration of data sets Activity period, profile Population/mass index Period: Sep 22-Oct 5

Conclusion

Shower	Activity	Max	λ_{\odot}	Radiant	Best observed		Rate
		Date	2000	α δ	$50^{\circ}\mathrm{N}$	$35^{\circ}\mathrm{S}$	
Sgr/Capricornids (115 DSC)	Jan 13–Feb 04	Feb 01	$312^{\circ}5$	$299^{\circ} - 15^{\circ}$	$11^{h}-14^{h}$	$09^{h}-14^{h}$	Medium
χ -Capricornids (114 DXC)	Jan 29–Feb 28	Feb 13	$324^{\circ}7$	$315^{\circ} - 24^{\circ}$	$10^{h} - 13^{h}$	$08^{h}-15^{h}$	Low
April Piscids (144 APS)	Apr 20–Apr 26	Apr 22	$32^{\circ}5$	9° +11°	$07^{h}-14^{h}$	$08^{h}-13^{h}$	Low
ε -Arietids(154 DEA)	Apr 24–May 27	May 09	48°7	$44^{\circ} + 21^{\circ}$	$08^{h}-15^{h}$	$10^{h}-14^{h}$	Low
May Arietids (294 DMA)	May 04 –Jun 06	May 16	55°5	$37^{\circ} + 18^{\circ}$	$08^{h}-15^{h}$	$09^{h}-13^{h}$	Low
S. May Arietids (156 SMA)	Apr 20–May 22	May 08	47°5	$29^{\circ} + 10^{\circ}$	$08^{h}-15^{h}$	$09^{h}-13^{h}$	Low
o-Cetids (293 DCE)	May 05 –Jun 02	May 20	59°3	$28^{\circ} -04^{\circ}$	$07^{h}-13^{h}$	$07^{h}-13^{h}$	Low
N. ω -Cetids (152 NOC)	Apr 20–May 20	May 08	47°5	9° +19°	$07^{h}-13^{h}$	$07^{h}-13^{h}$	Low
S. ω -Cetids (153 OCE)	Apr 24–May 20	May 10	$49^\circ5$	$23^{\circ} - 03^{\circ}$	$07^{h}-13^{h}$	$07^{h}-13^{h}$	Low
Arietids (171 ARI)	May 14–Jun 24	Jun 07	76°5	$42^{\circ} + 25^{\circ}$	$06^{h}-14^{h}$	$08^{h}-12^{h}$	High
ζ -Perseids (172 ZPE)	May 07 $-$ Jun 26	Jun 14	83°5	$65^{\circ} + 28^{\circ}$	$07^{h}-15^{h}$	$09^{h}-13^{h}$	Low
β -Taurids (173 BTA)	Jun 12–Jul 04	Jun 28	96?5	$85^{\circ} + 23^{\circ}$	$08^{h}-15^{h}$	$09^{h}-13^{h}$	Low
γ -Leonids (203 GLE)	Aug 14–Sep 12	Aug 25	$152^\circ\!2$	$155^{\circ} + 20^{\circ}$	$08^{h}-16^{h}$	$10^{h} - 14^{h}$	Low
κ -Leonids (212 KLE)	Sep 06–Oct 03	Sep 21	$178^{\circ}5$	$159^{\circ} + 18^{\circ}$	$07^{h}-15^{h}$	$09^{h}-13^{h}$	Low
Sextantids (221 DSX)	Sep 23–Oct 07	Sep 30	$187^{\circ}5$	$154^{\circ}00^{\circ}$	$06^{h}-12^{h}$	$06^{h}-13^{h}$	Medium

Shower Calendar 2015 + Meteor Shower Workbook 2014

Establish a revised Table step by step (select shower, high/low rate), apply various techniques (optical, radio), calibrate data, compare with radar data (*r*, ZHR/flux, activity)

@187.5 deg: RA=154, De=0, V=32km/s, interval 180-195 deg

Conclusion

Shower	Activity	Max	λ_{\odot}	Radiant	Best observed		Rate
		Date	2000	$\alpha \delta$	$50^{\circ}\mathrm{N}$	$35^{\circ}\mathrm{S}$	
Sgr/Capricornids (115 DSC)	Jan 13–Feb 04	Feb 01	$312^{\circ}5$	$299^{\circ} - 15^{\circ}$	0 11 ^h -14 ^h	$09^{h}-14^{h}$	Medium
χ -Capricornids (114 DXC)	Jan 29–Feb 28	Feb 13	324?7	$315^{\circ} - 24^{\circ}$	$^{\circ} 10^{h}$ – 13^{h}	$08^{h}-15^{h}$	Low
April Piscids (144 APS)	Apr 20–Apr 26	Apr 22	$32^{\circ}5$	9° +11°	$07^{h}-14^{h}$	$08^{h}-13^{h}$	Low
ε -Arietids(154 DEA)	Apr 24–May 27	May 09	48°7	$44^{\circ} + 21^{\circ}$	$0.08^{h}-15^{h}$	$10^{h}-14^{h}$	Low
May Arietids (294 DMA)	May 04 –Jun 06	May 16	55°5	$37^{\circ} + 18^{\circ}$	$0.08^{h}-15^{h}$	$09^{h}-13^{h}$	Low
S. May Arietids (156 SMA)	Apr 20–May 22	May 08	47.5	$29^{\circ} + 10^{\circ}$	$000^{h}-15^{h}$	$09^{h}-13^{h}$	Low
o-Cetids (293 DCE)	May 05–Jun 02	May 20	59.°3	$28^{\circ} - 04^{\circ}$	$07^{h}-13^{h}$	$07^{h}-13^{h}$	Low
N. ω -Cetid. (152 \square C	An A Au	AL Y	47 .	$^{\circ}$ +1 /	$01^{h}-13^{h}$	$07^{h}-13^{h}$	Low
S. ω -Cetid. (2) 3. 0CE	Apr 24 - May 20	Vy 0	. <u>1 °5</u>	23° –05	07 ^h –13 ^h	$07^{h}-13^{h}$	Low
Arietids (171 ARI)	May 14–Jun 24	Jun 07	76.5	$42^{\circ} + 25^{\circ}$	$06^{h}-14^{h}$	$08^{h}-12^{h}$	High
ζ -Perseids (172, ZPE)	May07–Jun 26	Jun 14	83 °.5	$65^{\circ} + 28^{\circ}$	° 07 ^h –15 ^h	09 ^h –13 ^h	Low
β -Taurids (17.3 B7.A)	J n 19–Ju 04	- a 27-	S.	80+17	b-5h	02 12	Low
γ -Leonids (03 (15)	us 1/ S / 2	.u 25		159 + 09	6		Low
κ -Leonids (212 KLE)	Sep 06–Oct 03	Sep 21	178°5	$1.9^{\circ} + 18^{\circ}$	07 ^h 5 ^h	$09^{h}-13^{h}$	Low
Sextantids (221 DSX)	Sep 23–Oct 07	Sep 30	187°5	$154^{\circ}00^{\circ}$	$06^{h}-12^{h}$	06 ^h -13 ^h	Medium

Shower Calendar 2015 + Meteor Shower Workbook 2014

Establish a revised Table step by step (select shower, high/low rate), apply various techniques (optical, radio), calibrate data, compare with radar data (*r*, ZHR/flux, activity)

@187.5 deg: RA=154, De=0, V=32km/s, interval 180-195 deg