

IMEX – Interplanetary Meteoroid Environment for exploration:

Modeling meteor showers anywhere, anytime

R. Soja, M. Sommer, R. Srama, P. Strub, E. Grün, J. Rodmann, J. Vaubaillon, A. Hornig, L. Bausch, J. Herzog

Goal:

Model of the fine structure in the Solar System dust cloud from cometary trails/streams (>100µm)

To study:

- meteor showers at Earth
- meteor showers at other planet locations
- comet dust emission
- planetary perturbations, scattering
- > the impact hazard to spacecraft

Impact on to Hubble

Space Telescope solar cells ESA, Drolshagen, 2008

- **Emit** dust:
 - from 428 short comets
 - for 200-400 years
 - inwards of 3AU from sunlight hemisphere
 - around 0.33 million particles/ comet/ mass
 - 8 masses 100microns to 1cm.

(2) Creating the meteoroid stream database

- Integrate orbits (gravity and radiation effects)
 - Constellation distributed computing platform
 - Citizen science project: 12478 users with 57,521 PCs world wide
- Generate a database of cometary dust
 - Save each integrated particle several times per orbit between 1980-2080
- ➤ Result: we have a database from which can reconstruct the orbits of all stream particles from 429 comets.

Andreas Hornig and Lars Bausch: aerospaceresearch.net

Verifying the model (1): Meteor Storms Leonids in 2001

- Dust from **55P/Tempel-Tuttle** 1690-1998
 - Leonids at Earth 2001
 - Compare observed and modeled max times of storms at Earth: Within 10-30mins.

Verifying the model (1): Meteor Storms Leonids in 2001

• ZHR profiles for different velocity models

Verifying the model (2): Comet Trails Comparison with IR images

- > 67P/Churyumov-Gerasimenko
 - Spitzer observations in 2004-6
 - Kelley et al 2008
 - Agarwal et al. 2010
 - Brightness match factor ~2

www.uni-stuttgart.cle

Verifying the model (2): Comet Trails Comparison with IR images

Trail width matches well, but requires low velocities (Agarwal et al. 2010 model)

Kelley et al. 2008 observations: trail profiles

Across the trail

Summary

- > IMEX model now performs well for individual streams
 - Generation of large volumes of data works well
 - Resulting trails match IR trail observations and meteor storm observations
- Ready for the next stage:
 - mass production of database of streams of 429 short period comets for the period 1950-2100.

The Trail of 67P/Churyumov-Gerasimenko

Dust Streams near an object near 1AU (STEREO-B)