## Independent identification of meteor showers

R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš

Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Slovakia

September 2014

# Scientific interest **EDMOND** SonotaCo 14 years of activity 7 years of activity >30 stations 155 stations • 173 796 meteor orbits 168 032 meteor orbits

#### Scientific interest



Thanks to Jakub Koukal and Roman Piffl (EDMOND consortium)

#### METEOROID STREAM IDENTIFICATION METHODS

- Choose a dynamical similarity function D-criterion.
- Choose a meteoroid streams search algorithm.
- Choose a similarity threshold  $D_c$ .

# D-CRITERION D3H = le8 - eA/2 + l98 - 9A/2 + 2. sin 184/2 Southworth & Hawkins (1963) Smithson. Contr. Astrophys, 7, 261 $e_A$ , $e_B$ – eccentricities, $q_A$ , $q_B$ – perihelion distances, $I_{BA}$ – the angle between the orbital planes, $\pi_{BA}$ – the difference between the longitude of perihelion, measured from the intersection point of the orbital planes.

#### THRESHOLD



- " magic" 0.2
- $D_c = 0.2 \cdot \left(rac{360}{N}
  ight)^{1/4}$ Southworth, R.B. & Hawkins, G.S., (1963), Smithson. Contr. Astrophys, 7, 261
- $D_c = 0.8 \cdot N^{-1/4}$ Lindblad, B.A., (1971),
  Smithson. Contr. Astrophys, 12, 14
- P(K = 1, M = const)Jopek, T.J. &Froeschle, Cl. (1997),

Astronomy and Astrophysics, 320, 631









$$\begin{split} D_x^2 &= w_\lambda \left[ 2 \cdot \sin \frac{(\lambda_A - \lambda_B)}{2} \right]^2 \\ &+ w_\alpha \left[ (|V_{g_A} - V_{g_B}| + 1) \left( 2 \cdot \sin \frac{(\alpha_A - \alpha_B)}{2} \cos \delta_A \right)^2 \right] \\ &+ w_\delta \left[ (|V_{g_A} - V_{g_B}| + 1) \left( 2 \cdot \sin \frac{(\delta_A - \delta_B)}{2} \right)^2 \right] \\ &+ w_V \frac{|V_{g_A} - V_{g_B}|}{V_{g_A}}, \end{split}$$

where  $w_{\lambda}=0.17$ ,  $w_{\alpha}=1.20$ ,  $w_{\delta}=1.20$ , and  $w_{\nu}=0.20$ .





### RESULTS



| IAU | Code | $\lambda_{\odot}$ |        | δ     | $V_g$ | No    | DSH  |
|-----|------|-------------------|--------|-------|-------|-------|------|
| 004 | GEM  | 261.67            | 113.05 | 32.36 | 33.51 | 8268  | 0.03 |
| 007 | PER  | 139.48            | 46.75  | 57.62 | 58.27 | 17265 | 0.10 |
| 800 | ORI  | 208 14            | 95.36  | 15.58 | 65.46 | 5228  | 0 04 |

### RESULTS



| IAU | Code | $\lambda_{\odot}$ |        | δ     | $V_g$ | No   | DSH  |
|-----|------|-------------------|--------|-------|-------|------|------|
| 002 | STA  | 215.33            | 47.10  | 12.89 | 27.62 | 1155 | 0.02 |
| 017 | NTA  | 225.77            | 55.33  | 22.07 | 27.91 | 1403 | 0.01 |
| 019 | MON  | 258.77            | 100.68 | 8.24  | 40.98 | 467  | 0.03 |
| 250 | NOO  | 243.41            | 88.07  | 15.43 | 42.54 | 233  | 0.05 |
| 025 | NOA  | 195.74            | 31.01  | 16.55 | 33.31 | 74   | 0.13 |
| 028 | SOA  | 195,03            | 30.84  | 7.75  | 28.06 | 903  | 0.08 |

#### Conclusions





Thank You For Your Attention!