WHY CHIPOLATA? fast CHoppIng PhOtographic meteor camerA # CAMS BENELUX Felix Bettonvil, Carl Johannink & Martin Breukers # INTRODUCTION - Nowadays is a choice of video systems - e.g. Metrec, UFOCapture, CAMS. - They form <u>networks</u>, - Deliver data, - Results & - Create <u>Feedback</u> # **CAMS**CAMERAS FOR ALL SKY METEOR SURVEILLANCE ### Mission statement CAMS is an automated video surveillance of the night sky in search of meteor showers to validate IAU Working List of Meteor Showers. ### **CAMS** IN THE NETHERLANDS - On occasion of Draconid outburst (2011) introduced in NL - First trial with Orionids 2011. 2x4 cameras from 2 Dutch stations. Because of ~100 double station meteors considered as success. - Start of CAMS Benelux = Belgium, Netherlands, Luxembourg - Initially 4 stations, start April 2012 - Counterpart of the US & New Zealand networks - Goal of this talk: status update + invitation to join ### CAMS TECHNICS - Watec 902H2 - 12mm F F1.2 lens (20x30° FoV) - EZ CAP USB framegrabber - Dual core PC - Free CAMS software - Automatic recognition - Automatic astrometry (to ~1arcmin) - To do yourself: quality check, daily submission of data txt files - Remote operation ### SIDE PRODUCTS - Fireballs captured as well - Thus plays the role of fireball patrol network too - Powerful - Redundant - Meteorites! $$\alpha = 307.3^{\circ} + / - 0.4$$ $\delta = 32.7^{\circ} + / - 0.4$ Vg = 18.0 km/s + /- 0.1 Station 311 [Gronau / C. Johannink] ### IT IS A PROJECT - And thus needs organization & coordination: - Coordinator (Carl Johannink); Standby-coordinator (Martin Breukers) - Daily: submission of files by observers, processing/administration & updates to observers. Extremely fast response time & results known - Data sent regular to Jenniskens for final analysis / publication - Thereafter data public # ADMIN | Results until: Sep. 15, 19:00 UT |----------------------------------|-----|----------------|-------------|------------|------|---------|---|--|------------|-------------|----------|----------------|----------------|-------------|----------|------------------|---------------|-------------------|----------|-------------|---------------|--------------|----------------|-----------|-----------|--------------|---------------|---------------|--------------------|------------|---------------|---------------|--------------| | ; | | | 1 | | | | | | | | | | | | | Sep | temb | er 20 | 014 | | | | | | | | | | | | | | | | | | 7 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | | # sim. | 655 | <u></u> | Ţ | | | | | | | | | | | | | | | | 66 | 26 | 59 | 114 | 37 | 1 | 23 | 43 | 7 | 27 | 17 | 107 | 119 | 9 | 655 | | 311 | | | 7 | إحدم | | | | بحجم | لاجترا | بحجام | | | | | | بحجم | بحجا | إحدم | Х | | Х | Х | X | | Х | X | ,,,,, | X | X | 7 | X | | Carl | | 312 | | ; | - |
 | | | | } |
 | | ar ar a | |
 | |
 | | ar ar al | | -^-
X | | -^- | ^- | /-^- | | -^- | /-^- | | | /-^- | /-^- | /_^. | ļ | Carl
Carl | | | ~~~ | 'n- | 4 | | | | | 44 | f 2 | | | | **** | | . | | | | -^ | | -^ | ↓.^
X | ∔-^
X | | ∤_^
X | ‡^
! | | | ÷-^- | ÷-^- | - | | Carl | | 313
321
322 | | ¦ | · | | | | | - - | | j1 | | | | | | ji | | |
X | | ^- | | - - | V | | | | ^- | | ^- | - ^-
X | | Martin | | 322 | | f | ·/ | <u> </u> | | | | | الدائداتهم | إسسام | | | | | | | | | -^-
x | | | | · · | '- | | / | <u> </u> | / -\$- | '-÷- | 7÷- | /÷ | ∤ -\$- | Martin | | 323 | | . | |
 | | | | 1 |
 | | ar ar a | |
 | | | | | | -^- | -^- | -^- | - <u>^</u> - | ¦-;- | وشوا | -^- | /-^ | /-^- | /-^- | /-^- | /-^- | /_^. | /-^- | Martin | | 323
324 | | j | 4
1 | \$i
 | } | } | f
i | 14 | f
i | f d | | \$
1 | f an an a
f | }
i | f
f | } 4 | | }i | -^- | بد سے '۔۔ ا | X | ∤^
X | بعثما | Х | ه سن'سه إ | #^
 X | ∮
X | ∔ | # <i></i> `
* X | #^ | # _^`_
* X | ^`
X | Martin | | 325 | | / | | | | | | r | | ri | | | | | | ri | | | | | - <i>-</i> ^- | - <i>-</i> - | | | | rê- | rê- | - ^-
x | - <i>-</i> | - <i>-</i> | - ^-
X | - ^-
X | Martin | | 326 | | 1 | ·j | [| | | | j | <u>_</u> ' | jj | | | | | | <u> </u> | | | | | | | | | | | | | | | | | Martin | | 331 | | #
 | 1 | (<u>-</u> | | | | 11 |)

 | <u> </u> | ar ar a | | | | | <u> </u> | a- a- a | | Х | Х | Х | Х | Х | | Х | Х | Х | | 7 | Х | X | | Klaas | | 332 | | ŗ-, | # | # | }i | | }
 | f | ф | f | | ;
; | †
 | } — — .
 | ;
; | <i> </i> | | }
 | Х | Х | Х | Х | X | | X | X | X | | 7 | X | ‡ | - | Klaas | | 337 | | (| 7 | r; |
 | | <i>†</i> . | 7 | r: | r; | | r | <i> </i> | <i> </i> . | <i> </i> | r! | | r; | X | Χ |
X | | <i>†</i> | | | т — —
. Х | <i>† – –</i> | | | X |
. X | | Klaas | | 338 | | ; | ·j | [| | | | <u> </u> | <u></u> | j j | | | | | | <u></u> | | | х | x | x | X | X | | Х | X | X | | 1 | x | × | <i> </i> | Klaas | | | | †
 | | | | | | | | [1 | ar ar ai | | arara: | | | <u> </u> | ar ar a | | Х | X | Х | X | Х | Х | Х | X | X | | " | Х | X | Х | Piet | | 341
342 | | 7- | | , | | | · | | , | , — — 4
 | | | | | | <i> </i> | | | Х | Х | Х | Х | Х | Х | Х | Х | X | | 7 | Х | X | X | Piet | | 346 | | <u> </u> | 7 | F1 | / i | | <i> </i> .
 | 71 | /: | F1 | | <i> </i> | <i> </i> |
 | <i> </i> | <i></i> | | | | | | | | | | | | | | | | | Marc | | 347 | | <u> </u> | 7 | [| [| [| [| 7 | [· | [] | | [| [| [| [| , · | | [| Х | Х | Х | х | Х | | Х | X | Х | Х | Х | Х | Х | Х | Erwin | | 351 | | † - | 7 | | | | | 1 | <u> </u> | j7 | ar ar a | | | | | <u> </u> | | | Х | Х | Х | Х | | | Х | Х | | (| х | Х | X | X | Koen | | 352 | | J | Ţ | | | | | | | | | | | | | | | | Х | Х | Х | X | | | Х | X | | | Х | X | X | X | Koen | | 356 | | | J | | | | | | | | | | | | | | | | Х | х | Х | Х | X | | Х | X | X | Х | | Х | X | X | Paul L. | | 361 | | <u> </u> |
 | | | |
 | [] | ;
 ; | [] | | / | | | | [] | | | ٧ | ٧ | V | V | | | V | V | V | V | X | X | X | | Robert | | 362 | | | 4 | []
 | | | | | (| | | | | | | | , | | V | V | V | V | | | V | V | V | V | X | X | X | | Robert | | 363 | | را | <u></u> | | | | | 1 | | | | | | | | | | | V | V | V | V | | | V | V | V | V | X | X | X | | Robert | | 364 | | j | J | ل ا | | | | | , | أريا | | | | | | ر ۔۔۔
اب ہے۔ا | لہ ہے۔ | الريسيا | V | V | V | V | | | V | V | V | V | X | X | _ X | | Robert | | 371 | | <u> </u> | j |)
 | ر | | j |] |) | , | ar ar a | | j
Jarara | | , | / | ر
ام جو جو | , | Х | Х | Х | Х | X | | | X | | | | X | X | | Hans | | 372
373 | | | 1 | | | |
 | 1 1 |
 | 1 1 | | ļ
+ |
 | |
 |
 |
 |
 | Х | X | Х | X | X | | | Х | | | | Х | X | | Hans | | 373 | | <u>.</u> _ (| 1 | [] | | | | 1 | ļ | 11 | | | | | | <u>[]</u> | |] | Х | Х | Х | Х | Х | | | Х | | | | Х | X | | Hans | | 376 | | ļ | ۔۔۔اِ | | | | | | | لاسا | | | | | | الديا | | | الديا | Х | Х | Х | | | | Х | | | 1 | Х | |] | Felix | | 381 | | ļ., | |]
 | | | ,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | <u> </u> |)
 | , | ar ar a | ,
, , , , , |
 | |
 |
 | | ا آ
اند سد مدا | Х | Х | Х | Х | Х | | Х | Х | | Х | | Х | _X | | J-M | | 382 | | | 1 | |
 | |
 | 4 | (| 11 | |
 |
 |
 |
 | |
 |
 | Х | Х | Х | X | X | | Х | Х | | Х | | Х | X | | J-M | | 383 | | ,
 | | | | | | 1 | <u> </u> | | | | | | | | | | X | Χ_ | Х | X | _ X_ | | X | Х | | | | X | X | | Paul R. | | 38/ | | <u> </u> | 7 | 7 1 | | _ = = 1 | | <u>, </u> | <u> </u> | | | | | | | <u> </u> | _ = = 1 | | v . | | | . v | | | v | . v | | | 7 | | . v | | Paul D | # **STATISTICS** # RESULTS # RESULTS # RESULTS # CAMELOPARDA (50) (70) Figure 4 – CAMS-measured geocentric radiant positions on 2014 May 23 and 24. Gray: Meteors with short V-shaped lightcurves. Figure 5 – Example meteor lightcurves and altitude range (• and × mark peak brightness) plotted as a function of the integrated meteor brightness. A: Typical case at 04^h41^m02^s UT; B: Likely incorrect, sharply peaked result at 05^h15^m59^s UT; C: Single-CAMS result at 06^h41^m13^s UT; D: Large meteoroid at 11^h34^m14^s UT. # **ETA-AQUARIIDS** | m, (rim) | D.1 | ppg | ** | | • / | | China e a strict a termina | 0 | | |---|---------------------|------------------|--------------------|-----------------------|---------------------|---------------------|----------------------------|----------------------|-------------| | Time (UT) | RA_{geo} | DEC_{geo} | V_g | q | 1/a | i | ω | 73 | Stations | | May 2013 | [°] | [°] | [km/s] | [AU] | [1/AU] | [°] | [°] | [°] | | | 2.12328 | 338.887 ± 0.127 | -0.927 ± 0.245 | 65.197 ± 0.762 | 0.53364 ± 0.01636 | 0.0892 ± 0.0649 | 164.873 ± 0.509 | 92.021 ± 2.893 | 41.6792 ± 0.0027 | 362,322 | | 3.09958 | 338.256 ± 0.051 | -0.478 ± 0.062 | 66.244 ± 0.089 | 0.56864 ± 0.00213 | 0.0057 ± 0.0080 | 163.630 ± 0.122 | 97.268 ± 0.332 | 42.6270 ± 0.0004 | 362,322 | | 6.09439 | 338.902 ± 0.098 | -1.269 ± 0.089 | 68.115 ± 0.130 | 0.59820 ± 0.00328 | -0.1620 ± 0.0123 | 165.345 ± 0.168 | 102.807 ± 0.464 | 45.5279 ± 0.0006 | 312,351 | | 6.10061 | 338.189 ± 0.510 | 0.195 ± 0.590 | 68.569 ± 1.074 | 0.61574 ± 0.02187 | -0.2168 ± 0.1000 | 162.194 ± 1.156 | 105.449 ± 3.411 | 45.5364 ± 0.0044 | 362,322 | | 6.11028 | 338.394 ± 0.331 | -1.381 ± 0.536 | 65.426 ± 0.875 | 0.56288 ± 0.01964 | 0.0984 ± 0.0752 | 164.734 ± 1.127 | 95.148 ± 3.330 | 45.5439 ± 0.0053 | 312,351 | | 6.11063 | 339.287 ± 0.215 | -1.451 ± 0.257 | 65.778 ± 0.318 | 0.54999 ± 0.00874 | 0.0447 ± 0.0270 | 165.467 ± 0.525 | 94.509 ± 1.291 | 45.5436 ± 0.0019 | 312,351 | | 6.11334 | 337.680 ± 0.120 | -0.001 ± 0.234 | 66.787 ± 0.550 | 0.60130 ± 0.01039 | -0.0199 ± 0.0499 | 163.098 ± 0.437 | 101.340 ± 1.837 | 45.5482 ± 0.0024 | 341,332,331 | | 6.11822 | 338.143 ± 0.076 | 1.329 ± 0.091 | 69.043 ± 0.155 | 0.62027 ± 0.00309 | -0.2876 ± 0.0145 | 160.085 ± 0.182 | 106.727 ± 0.472 | 45.5382 ± 0.0005 | 331,366 | | 6.11822 | 337.732 ± 0.086 | -0.001 ± 0.154 | 66.602 ± 0.297 | 0.59704 ± 0.00647 | -0.0040 ± 0.0254 | 163.116 ± 0.290 | 100.625 ± 1.068 | 45.5529 ± 0.0013 | 341,331 | | Time (UT) May 2013 2.12328 3.09958 6.09439 6.10061 6.11028 6.11063 6.11334 6.11822 6.11822 Lindblad (1990) | 337.60 | -1.60 | 65.90 | 0.61 | 0.03 | 165.50 | 101.50 | 45.80 | | | (1990) | | | | | | | | | | ### CONCLUSIONS ### CAMS is: - Very easy to do: 1) simple setup 2) easy operation. Black box - Delivers entire orbital data set - Excellent coordination, key to success. - Scientific results - Fun **bettonvil@astron.nl** if you are interested to join