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BRAMS is a Belgian network consisting of one beacon and 26 receiving stations to detect radio meteors by 

forward scattering. Because of the large amount of data generated by these stations, a good automatic detection 

algorithm is needed. In this paper, four algorithms currently under test are briefly described. Application of three 

of them to an example of BRAMS data is shown with a comparison to manual count in order to emphasize the 

advantages and disadvantages of each method. 

1 Introduction 

The BRAMS (Belgian RAdio Meteor Stations) network 

consists of one beacon located in Dourbes and 26 

receiving stations spread over Belgium. Each station 

records continuously a bandwidth of 2.5 kHz more or less 

centered on 49.97 MHz, the beacon frequency. The data 

are stored in WAV (sound) files of 5 minutes each. In 

total about 7500 files (288 files per station) are generated 

per day. Checking all those files manually for meteors is 

too much time consuming, so an automatic detection 

algorithm is mandatory. In this article, a quick overview 

of four different automatic detection methods of radio 

meteors in BRAMS data files is provided. Each method 

works either on the raw data obtained in the time domain 

or on a spectrogram. 

 

Figure 1 – A typical spectrogram from a BRAMS receiving 

station. Frequency range is 200 Hz centered on the beacon 

frequency. Duration is 5 minutes. Power is color coded. The 

horizontal line in the middle of the spectrogram is the direct 

reception of the BRAMS beacon, the inverse S-shaped lines are 

reflections on airplanes moving on a straight line and the short 

vertical lines are meteor echoes. The complex shapes on the left 

hand side of the spectrogram are also produced by airplanes 

which change directions. Manual count gives 17 underdense 

meteors. 

 

A spectrogram is a visual representation of the spectrum 

of frequencies in a signal as it varies with time. It is 

obtained from the time signal using a FFT (Fast Fourier 

Transformation). 

The result is a two-dimensional representation of the 

signal, where the horizontal axis represents time, the 

vertical axis is frequency and the color indicates the 

power of the signal. Figure 1 shows a typical BRAMS 

spectrogram. 

Three of the four methods are currently under evaluation 

by the BRAMS team by comparing their results to 

manual counts.  An example is provided below for each 

method. So far the comparison is made only for short-

lived underdense meteor echoes with a typical duration of 

a few tenths of seconds at most. These meteor echoes 

constitute the majority of meteor echoes detected in 

BRAMS data. 

2 Image recognition on spectrograms (I) 

The first method, developed by Pierre Ernotte, uses 

image recognition on spectrograms. The first step in the 

algorithm is the binarization of the spectrogram. Only 

pixels above a certain threshold are kept to filter out noise 

and their values are set to 1. It means that the information 

about the variations in the signal power is lost. Then the 

algorithm applies a vertical erosion (Gonzalez and 

Woods, 2007) using the fact that underdense meteor 

echoes appear mostly vertical in spectrograms while the 

beacon frequency and the plane echoes have a dominant 

horizontal component. The erosion operator 

superimposes a mask to each pixel with a value of 1 and 

keeps its value if all pixels underneath the mask are equal 

to 1, otherwise it is set to 0. In our case the mask is a 

vertical line whose length is chosen to be larger than the 

typical frequency width of plane echoes or of the beacon 

frequency. This vertical erosion may divide some meteor 

echoes in different parts. Dilation (Gonzalez and Woods, 

2007) along columns and adjacent lines is then performed 

to reconnect them. 

Since this technique is performed on spectrograms, it is 

easy to compare the results with manual counts which are 

also made on spectrograms (Calders et al., 2014). Planes 

are removed decently well, and the method provides good 

results for short meteors which appear mostly vertical 

(see Figure 2). However, some faint meteor echoes can 

be missed, when their vertical/frequency signature is 

discontinuous and hence they may not survive the 

erosion. The method does not work for long lasting 
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meteors (not present in the example in Figure 1) which 

have a large horizontal component and/or a complex 

structure.  Also the creation of the spectrogram as well as 

the erosion/dilation are very time consuming operations. 

Finally the method contains several empirical parameters 

which may have to be adapted for different BRAMS 

stations. 

 

Figure 2 – Application of Ernotte's method to the example 

spectrogram of Figure 1. Units for the axes are here given in 

pixels. The method detects 11 meteors (white dots) but six faint 

meteors do not survive the erosion and are missed. 

3 Image recognition on spectrograms 

(II) 

Another method using spectrograms has been developed 

by Emil Kraaikamp. First, an horizontal median filter is 

applied to the spectrogram to remove the direct reception 

of the beacon signal (and possibly other local 

transmitters). Then a set of oblique median filters is used 

to remove the airplane echoes, because those signals can 

be approximated by a set of straight lines with different 

inclinations and lengths. Finally a detection threshold 

using the median and the MAD (median absolute 

deviation) is used to distinguish between meteors and 

noise. 

Figure 3 – Application of Kraaikamp's method to the same 

example  in Figure 1. The method detects 18 meteors. Some 

parts of the complex airplane echoes (on the left side of the 

picture) are not fully removed and incorrectly detected as 

meteors (3 cases). 1 faint meteor is not detected. 

 

Like for Ernotte’s method, comparison with manual 

counts is easy. The method does not use binarization, 

which gives the possibility to use the signal power in the 

final detection step. It removes quite well the plane 

echoes as long as the shape is simple (i.e inverse S-

shaped lines). But it can produce false meteor detections 

when complex airplane echoes are present in the 

spectrogram (see Figure 3). Another drawback is again 

that the method is CPU intensive. 

4 Meteor detection using only the time 

signal 

Tom Roelandts is developing a method based only on the 

signal in the time domain. First, an adequate filtering is 

applied to keep only frequencies within 200 Hz below or 

above the beacon frequency (where all meteor echoes 

appear). This strongly reduces the noise in the data. Then 

the method computes running averages on a short and a 

long timescale (typical of the duration of an underdense 

meteor resp. plane echo) and divides them to obtain an 

indicator signal. The basic idea is that an underdense 

meteor echo will contribute strongly to the short running 

average but not to the long one, hence creating a peak in 

the indicator signal. An appropriate threshold is used to 

detect these peaks. More information about this method 

can be found in Roelandts (2014). Here we only provide 

in Figure 4 the results of the application of this method to 

the raw data used to compute the spectrogram in 

Figure 1. The method may miss faint meteor echoes 

appearing at the same time as the brightest part of an 

airplane echo. In this case the resulting peak of the 

indicator signal can be lower than the threshold and the 

meteor is missed. 

Since this method does not compute spectrograms, its 

main advantage is that it is much faster than the previous 

ones. Also the duration of a meteor can be measured 

more accurately in the time domain than in a 

spectrogram.  It also has only three parameters.  The 

choice of the threshold is however currently empirical 

and varies from station to station. 

 

Figure 4 – Application of Roelandts ‘method to the raw data  

used to compute the spectrogram in Figure 1. The method 

detects 14 meteors whose locations have been added to the 

spectrogram a posteriori for comparison with the previous 

methods. Three meteors are missed as they appear at the same 

time as the brightest (red) part of airplane echoes (see text). 
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5 Meteor detection using neural 

networks 

This method is developed by Victor Roman and is based 

on two different types of artificial neural networks. 

Firstly, the Self-Organizing Map, SOM, (Kohonen, 1998) 

is a type of neural network that produces a low-dimension 

(typically two) representation (map) of the input signals 

(in our case e.g. a vector containing the power or 

amplitude recorded in WAV files). A SOM consists of 

components called neurons whose spatial location in the 

map corresponds to a particular domain of the input 

signal patterns. SOM operates in two successive modes: 

training builds the map using input examples while the 

mapping automatically classifies a new input vector. The 

idea behind using this method is that meteor echoes will 

be mapped on specific meteor neurons, while plane 

echoes or noise will be mapped to different locations of 

the map. The SOM is trained using unsupervised learning 

(meaning, in our case, that the user does not tell the 

network that a meteor is given as input). 

Another type of artificial neural network considered is the 

Multi-Layer Perceptron, MLP (Gardner and Dorling, 

1998) which consists of multiple layers of interconnected 

neurons, representing a non-linear mapping from an input 

vector to an output vector. Each neuron in a given layer is 

connected to all neurons from the previous and 

subsequent layers with weights that are calculated using a 

non-linear transfer/activation function. For this study, a 

feed forward architecture was chosen, meaning that the 

data is only propagated from the input to the output layer. 

Training such a neural network requires a supervised 

algorithm, the one used here being the back propagation 

algorithm. In both methods input data can be taken either 

from the (filtered) raw data (e.g. a vector with power 

samples taken during 0.1 sec) or from spectrograms (e.g. 

a vector with pixel intensities taken as one of the 

spectrogram's vertical lines). 

More information about these methods and preliminary 

results can be found in (Roman, 2014). The results are 

not discussed here as they cannot easily be compared to 

the other methods. 

6 Conclusion and further work 

We have briefly presented four different algorithms 

considered for the automatic detection of radio meteors in 

the BRAMS data. Two of the methods are based on 

image recognition on spectrograms, one uses neural 

networks and one detects the meteors using only the time 

signal. 

These methods have been applied to one test case for 

comparison only and to illustrate the 

strengths/weaknesses of each method. No firm conclusion 

can be reached from this test case only. Statistical studies 

on a large set of data are necessary and currently carried 

out by the BRAMS team. All methods work relatively 

fine for short-lived (underdense) meteors except when 

many plane echoes with complicated shapes are 

superimposed on them (e.g. in the left part of Figure 1). 

The longer (overdense) meteor echoes (not present in 

Figure 1) pose another real challenge. Their automatic 

detection will be considered in a later phase of the 

project. 

Results from the various automatic detection methods 

must be assessed by comparing with manual counts. At 

the moment there is only a single day of manually 

detected meteors for one receiving station. We plan to 

extend our manual count dataset to more stations, several 

days, with and without high meteor stream activity, in 

order to better assess the different automatic detection 

algorithms. 

Acknowledgments 

BRAMS is a project of the Belgian Institute for Space 

Aeronomy which is funded by the Belgian Solar 

Terrestrial Centre of Excellence. This project is carried 

out in collaboration with many radio amateurs. We would 

like to thank them for their participation in this project. 

Last but not least: special thanks to Pierre Ernotte, Emil 

Kraaikamp, Victor Roman and Tom Roelandts for the 

development of the automatic detection algorithms and 

Antonio Martinez for proofreading this paper. 

References 

Calders S., Lamy H., Gamby E. and Ranvier S. (2014). 

“Recent developments in the BRAMS project”. In 

Gyssens M. and Roggemans P., editors, 

Proceedings of the International Meteor 

Conference, Poznan, Poland, 22-25 August 2013. 

IMO, pages 170–172. 

Gardner W. M. and Dorling S. R. (1998). “Artificial 

Neural Networks (the MultiLayer Perceptron) – a 

review of applications in the atmospheric 

sciences”. Atmospheric Environment, 32,  

2627–2636. 

Gonzalez R. C. and Woods R. E. (2007). Digital Image 

Processing (3
rd

 edition). Prentice-Hall, ISBN 978-

0131687288. 976 pages. 

Kohonen T. (1998). “The Self-Organizing Map”. 

Neurocomputing, 21, 1–6. doi: 10.1016/S0925-

2312(98)00030-7. 

Roelandts T. (2014). “Meteor Detection for BRAMS 

Using Only the Time Signal”. In Rault J.-L., and 

Roggemans P., editors, Proceedings of the 

International Meteor Conference, Giron, France, 

18–21 September 2014. IMO, pages ???–???. 

Roman V. S., Buiu C. (2014). “Automatic detection of 

meteors using artificial neural networks”. In 

Rault J.-L., and Roggemans P., editors, 

Proceedings of the International Meteor 

Conference, Giron, France, 18–21 September 

2014. IMO, pages ???–???. 


