
Proceedings of the IMC, Giron, 2014 1

FreeTure

A Free software to capTure meteors for FRIPON
Yoan Audureau1, Chiara Marmo1, Sylvain Bouley1, Min-Kyung Kwon2, François Colas2,

Jérémie Vaubaillon2, Mirlan Birlan2, Brigitte Zanda3, Pierre Vernazza4,

Stephane Caminade5, Jérôme Gattecceca6

1
Université Paris-Sud, Laboratoire GEOPS, UMR8148, Orsay, F-91405, France

yoan.audureau@u-psud.fr,chiara.marmo@u-psud.fr

2
IMCCE, Observatoire de Paris, France

3
MNHN, Paris, France

4
LAM, Université Aix Marseille, Marseille, France

5
Université Paris Sud, IAS, UMR8617, Orsay, France

6
Université Aix Marseille, CEREGE, Aix-en-Provence, France

The Fireball Recovery and Interplanetary Observation Network (FRIPON) is a French project started in 2014 which

will monitor the sky, using 100 all-sky cameras to detect meteors and to retrieve related meteorites on the ground.

There are several detection software all around. Some of them are proprietary. Also, some of them are hardware

dependent. We present here the open source software for meteor detection to be installed on the FRIPON network's

stations. The software will turn on Linux with gigabit Ethernet cameras and we plan to make it cross platform. This

paper is focused on the meteor detection method used for the pipeline development and the present capabilities.

1 Introduction

The French FRIPON project aims to detect fireballs and to

retrieve related meteorites on the ground. It also aims to

detect standard meteors and to build a database of

computed orbits to find related parent bodies. To do that,

more than 100 stations will cover the complete surface of

France. Each one will be equipped with an all-sky GigE

camera and a computer. On each local computer, a software

will be used to control the camera and to detect meteor

events. A lot of software exist to do that, but some are

proprietary (e.g. UFOCapture
1

) and the others are

hardware dependent or not cross platform (Molau, 98).

FRIPON needs a new meteor detection software because of

its number of stations and it should have the possibility to

easily modify or to develop some features. With a free,

open source and a cross platform software, FRIPON can be

easily extended by installations on amateur or professional

stations. Thus, the public could start contributing to the

project by sharing their information about a detected event

or by adding new features to the software for maintaining

or improving it. Anyone could for example add the support

of a new camera, add new detection algorithms or build a

GUI.

1 UFOCapture, http://sonotaco.com/e_index.html.

Table 1 – Meteor detection software

 Open source Platform Output

UFO

Capture
1

no windows .csv, xml,

avi, jpg. …

MetRec
(Molau 98)

yes Msdos,

w95, w98

.bmp …

ASGARD
4
 no Linux

(debian)

.tar (.png),

.txt, avi …

MeteorScan
(Gural96)

no Mac,

windows

.tiff …

FRIPON
(fripon.org)

yes Linux,

windows

.avi,, jpg,

fits 2D, fits

3D

2 Initial features

The software is developed in C++ using Boost
2

 and

OpenCV
3
 libraries to easily make it cross platform on

Linux and Windows operating systems. The following

features were required:

 Continuous real time meteor detection, day and night.

 Input frames grabbed from a GigE camera or from a pre-
recorded video.

2 Boost: http://www.boost.org/
3 OpenCV: http://opencv.org/

mailto:yoan.audureau@u-psud.fr

2 Proceedings of the IMC, Giron, 2014

 Output files in time sequences or stacked frames.

 Output FITS files (among others) without any
destructive compression for scientific analysis.

 Open Source.

3 General software structure

We describe here the general layout of the software. Four

parallel processes run at the same time: Acquisition, Stack

acquisition, Detection and Recording. Their parameters

may be set in a configuration file included in the package.

The first thread is used to manage acquisition from a GigE

camera, video or images. Under Linux, an open source

library named Aravis
4
 is used to control the camera. Under

Windows, constructor's libraries are used. The acquisition

thread grabs a frame and stores it in a shared buffer. Its size

depends of how many frames we want to record for a

detected event and it determines the memory footprint of

the process. The buffer is shared with another thread used

to stack frames and also with the detection thread. The last

frame stored in the shared buffer and the previous one are

both used by the detection process. Detected events have

their own buffer shared with a recording thread to save

events on the hard disk in a different file format. Figure 1

summarizes the general structure of the program.

Figure 1 – Software's outline.

4 Detection method

The algorithm used for the meteor detection is quite simple

and is more or less based on the detection method used by

the ASGARD software (Weryk, 2013). The detection

thread receives a notification to indicate that a new frame

has been grabbed. The detection process starts to operate

two main steps to locate probable events on the current

frame and two others to try to build them in time.

The first step starts to filter the current frame to select some

pixels which will be used to feed the detection process. To

do that, two successive frames are subtracted for removing

stationary features and a threshold is defined.

4 ARAVIS: https://wiki.gnome.org/Projects/Aravis

The second step aims to build a list of local event objects. A

local event (LE) refers to a group of regions of interest

(ROI) which intersect each other. If a pixel exceeds the

threshold value, a region of interest (ROI) of 10 x10 pixels

around its location is defined and extracted. The ROI is

kept if there are more than n pixels inside which also

exceed the threshold value. In that case, the region of

interest is colored in black in the frame to avoid treating the

same event many times. The extracted region is compared

to the element of the list of local events. If it intersects a

ROI of an existing LE, it is added in the same LE.

Otherwise a new LE is created and the ROI is added in it.

To quickly know if a new ROI intersects an existing ROI in

a LE, a colored map is produced. Each LE has its own RGB

color on this map, which only exists for the current frame.

At the position of the new ROI, the color is extracted. If

there is at least one pixel inside with another color than

black, this ROI is linked to the LE which has the same color

in the LE list.

Once the list of local events is known, the detection on the

current frame is done. But the local events must still be

linked with global event objects. A global event is a group

of local events from different frames. It always exists,

contrary to the local event list which only exists during a

frame analysis. It is used to link local events which intersect

each other not in space but in time. That means that they

belong to the same event. If a new local event intersects

none of the last local events of a global event, it is added

into a new global event. We also check during the link

operation if the new potential local event location seems to

follow the general global event moving direction. This is

done to check if the construction of a global event moves in

one direction in function of time.

Finally, the existence of global events stored in a list is

managed. Each global event stores the number of frames

passed since its creation and the number of frames without

any new local event has been linked. A limit which can be

defined for an event duration is also used to avoid to record

too long events like planes. With these three sets of

information, a detected event which is stored in the

computer memory is finally saved on the hard disk or

removed.

5 Running the software

The software is quite simple to run. There is just need to

write a command line with the name of the program to be

written together with some arguments according to the

chosen mode. Currently, there are three modes.

1) List detected GigE cameras

2) Make a single capture

3) Run detection

Proceedings of the IMC, Giron, 2014 3

 The first one is used to list detected GigE cameras with

some other information about the devices. The second

allows to test a camera by making a single capture and by

setting some options like the exposure time, the gain and

the acquisition format. Finally, the last mode is the

detection mode to start to detect meteors. For the second

mode, parameters are directly given as arguments in the

command line. For the third mode, parameters may be set

in a configuration file.

6 Results

With our detection software, some first bad and good

results have been recorded, like the following plane

(Figure 2) and meteors (Figure 3 and 4).

As planes are longer events than meteors, their recording

can be avoided by a definable limit for an event duration.

Figure 2 – Example of false detection with a plane trail.

Figure 3 – The same meteor detected by three stations. 1) Stephan

Jouin with UFO Capture, 2) Orsay with our software, 3)

Observatoire de Paris by regular captures with long exposure.

Figure 4 – Meteor examples.

7 Conclusion and future work

Currently, the main features required are operational and

the software can run every night to start detecting meteors

events. In the future, we plan to add an algorithm for the

daytime detection and to make some comparisons with

other meteor detection software to check the efficiency of

ours. Finally the Windows version of the software still

needs to be packaged.

References

Molau S. (1998). “The Meteor Detection Software

MetRec”. In, Baggaley W. J., Porubčan V., editors,

Proceedings of the International Conference

Meteoroids 1998, Tatranska Lomnica, Slovakia,

August 17–21, 1998. 131–134.

Gural. P. (1997). “An operational autonomous meteor

detector”. WGN, Journal of the International Meteor

Organization, 25, 136–140.

Weryk R. J., Campbell-Brown M. D., Wiegert P. A.,

Brown P. G., Krzeminski Z., and Musci R. (2013).

“The Canadian Automated Meteor Observatory

(CAMO): System overview”. Icarus, 225, 614–622.

