
Proceedings of the IMC, Giron, 2014 1

Software for analysis of visual meteor data
Kristina Veljković, Ilija Ivanović

Petnica Meteor Group, Valjevo, Serbia

mackikac@gmail.com, ilija91ivanovic@gmail.com

In this paper, we will present new software for analysis of IMO data collected from visual observations. The software

consists of a package of functions written in the statistical programming language R, as well as Java application which

uses these functions in a user friendly environment. R code contains various filters for selection of data, methods for

calculation of Zenithal Hourly Rate (ZHR), solar longitude, population index and graphical representation of ZHR and

distribution of observed magnitudes. Java application allows everyone to use these functions without any knowledge

of R. Both R code and Java application are open source and free with provided user manuals and examples.

1 Introduction

This paper presents results of software development for

analysis of IMO visual meteor data. The software consists

of a package of functions written in the statistical

programming language R, as well as Java application. The

purpose of R functions is to provide basic analysis, and

Java application is developed with the aim to make use of

this functions in a user friendly environment.

The R package MetFns contains data frames with visual

meteor data (rate or magnitude data), as well as various

filters for the selection of the data, methods for calculation

of Zenithal Hourly Rate (ZHR), solar longitude, population

index and a graphical representation of the ZHRs and the

observed magnitude distributions.

The developed Java application allows users to call R

functions without any knowledge about the R programming

language. Although its purpose is to be proxy for these

functions, the application contains a few extra features

which can be useful to users. The application uses a

standard graphical interface, and it contains help files from

the R package.

All software is open source and free, with manuals and

examples provided for both software packages.

The rest of the paper is organized as follows. In Section 2,

we provide details about the installation of package MetFns

and the application MetRApp. The description of the R

package and the Java application is given in Sections 3 and

4, respectively. Finally, conclusions are drawn in Section 5.

2 Installation

In order to install the R MetFns package, follow the next

steps:

1. (if not already installed) download and install the latest

version of R
1

2. Download the packages astroFns
2
 and plotrix

3

3. Download the package MetFns
4

In order to install the MetRApp application:

1. (if not already installed) download and install latest

JRE
5

2. Download and install the Runiversal package from

CRAN
6

3. Download the application
7

Please note: In our software we use many dependencies

developed by third party organizations. We are not

responsible for that content. Also, please note that as new

versions of those dependencies are developed, and you use

them, they may not be compatible with our software. We

will try to keep up with new versions of these

dependencies, but if you encounter difficulties, please

contact us.

3 R package

The R package MetFns consists of data frames containing

visual meteor data and functions which manipulate these

data. Data frames can be divided into three sections, by

their type:

a. Yearly rate data named rateXX, where XX represents

the two last digits of the year

1 cran.r-project.org
2 cran.r-project.org/web/packages/astroFns/
3 cran.r-project.org/web/packages/plotrix
4 cran.r-project.org/web/packages/MetFns/
5 http://www.oracle.com/technetwork/java/javase/downloads/inde

x.html?ssSourceSiteId=ocomen
6 http://cran.r-project.org/web/packages/Runiversal/
7 https://bitbucket.org/ivail/metrapp (alternatively it may be hosted

on www.meteori.rs)

mailto:mackikac@gmail.com
mailto:ilija91ivanovic@gmail.com

2 Proceedings of the IMC, Giron, 2014

b. Yearly magnitude data named magnXX

c. Accompanying data includes data frames radiant with

coordinates of shower radiants throughout the year,

shw_list, vmdbpers and vmdbsite with a list of observed

meteor showers, observers and observing sites,

respectively.

Functions that manipulate visual meteor data can be divided

into four types:

 Functions that read rate or magnitude data from the

IMO site or file saved on a computer, named

read.rate(data) and read.magn (data)

 Functions that select (filter) data by one or more criteria

 Functions that perform some calculations over data

 Functions that draw graphics with the data

Next, we will cover the last three types of functions in more

detail.

Filter functions

The Package MetFns contains 13 individual filter functions

and a global filter. Some filters can be used only on rate

data and it will be specified in the description of the filter.

In the following examples, we suppose that all rate and

magnitude data are previously loaded (using data function,

for example data (rate00))

 filter.shw (data, shw) selects data for a given visual

meteor dataset and specified shower code. For

example, if we want to select data for the Perseids from

the rate data for the year 2000, we would call the

function filter.shw in the following way

 filter.shw (rate00, shw="PER")

If we wish to do the same selection for the magnitude
data, we would type in the R console

 filter.shw (magn00, shw="PER")

 filter.date (data, year, month, day.beg,

day.end=day.beg) selects data for a given visual meteor

dataset and specified year, month and day (or days). By

default, the argument day.end (ending day) is set to be

equal to day.beg (beginning day). So, if the argument

day.end is not provided, the function filter.date selects

data for a given date, otherwise it selects data for a

period of days, limited by day.beg and day.end.

The day given in meteor datasets corresponds to the

beginning of the observing time period. For the

selection of the data, the day corresponding to the

middle of the observing time period is used. For

example, to select rate data for the period from 5–15

August 2007, we would type

filter.date (rate07, year=2007,

month=8, day.beg=5, day.end=15)

 In a similar way, we would select the magnitude data.

 filter.time (data, time.low, time.up) selects data for a

given visual meteor dataset and specified time period.

Arguments time.low and time.up are in the format 0-

2359 specifying, the lower and upper boundary of time

in hours and minutes, respectively.

 filter.imocode (data, imocode) selects data for a given

visual meteor dataset and specified IMO observer code.

 filter.obsname (data, name, name) selects data for a

given visual meteor dataset and specified observer's first

and last name. It can be used when one is not certain of

the IMO observer code (due to possible non-uniqueness

of the five letter combination).

 filter.gc (data, long.low=0, long.up=180, ew=c

("E","W"), lat.low=0, lat.up=90, ns=c ("N","S"))

selects data for a given visual meteor dataset and

specified geographical coordinates of the observing site

or interval of geographical coordinates. The arguments

long.low and long.up represent, respectively, the lower

and upper boundary of longitude and lat.low and lat.up

are, respectively, the lower and upper boundary of

latitude.

If the values of the arguments long.low and long.up, as

well as lat.low and lat.up, are the same, filter.gc selects

data for a particular observing site. This filter enables

one to select data only by longitude or latitude, with the

geographical coordinates being between given

boundaries, less, greater or equal to a boundary.

For example, if we wish to select magnitude data for the

year 2004 for a site with longitude 19.7E and latitude

44.2N, we would type into the R console.

filter.gc (magn04, long.low=19.7,

long.up =19.7, ew="E", lat.low=44.2,

lat.up=44.2, ns="N")

 filter.site (data, site) selects data for a given visual

meteor dataset and specified observing site. In order to

use this filter, the argument data has to consist of the

column named "sitecode".

 filter.country (data, country) selects data for a given

visual meteor dataset and specified country. The data

selection is performed using filter.site which filters data

by codes of all sites belonging to the specified country.

As for the function filter.site, data has to consist of the

column named "sitecode".

 filter.sol (data, sol.low=0, sol.up=359.999) selects data

for a given visual meteor dataset and specified solar

longitude or interval of solar longitudes.

 filter.F (data, F.low=1, F.up=3) selects data for a given

visual meteor rate dataset and specified correction factor

Proceedings of the IMC, Giron, 2014 3

or interval of correction factor for clouds. Arguments

F.low and F.up represent, respectively, the lower and

the upper boundary for the correction for clouds.

 filter.mag (data, mag.low=2.0, mag.up=7.5) selects

data for a given visual meteor dataset and specified

limiting magnitude or interval of magnitudes. The

arguments mag.low and mag.up are, respectively, the

lower and the upper boundary of the limiting

magnitude.

 filter.h (data, shw, Ralpha=NULL, Delta=NULL,

h.low=10, h.up=90) selects data for a given visual

meteor dataset, specified shower and its radiant

elevation or interval of radiant elevations. The

arguments h.low and h.up specify, respectively, the

lower and the upper boundary of the radiant elevation.

 filter.totcor (data, shw, Ralpha=NULL, Delta=NULL, r,

C=5) selects data for a given visual meteor rate dataset,

specified shower, population index and correction

factor. The correction factor is equal to (Rendtel and

Arlt, 2008)

)sin(

5.6

h

Fr
C

lmg

where r is the population index, lmg the limiting

magnitude, F the correction factor for clouds and h the

radiant elevation. One needs to specify the maximum

value of the correction factor C (default value of C is 5).

 The function filter performs various data selections for a

given visual meteor data. It is a wrapper function for all

previously mentioned filters.

For example, if we want to select rate data for

observations of the Perseids in Serbia, time period 5–

15
th

 August 2007, limiting magnitudes of 5.5 or higher

and a total correction factor less than 5, we would use

filter (rate07, shw="PER", year=2007,

month=8, day.beg=5, day.end=15,

country= "Serbia", mag.low =5.5,

r=2.2)

Calculation functions
In our R package, we have three functions that perform
different calculations on visual meteor data.

 solar.long (year, month, day, time) calculates the solar

longitude with respect to the equinox of 2000.0

(Steyeart, 1991) for a given year, month, day and time

in hours.

 zhr (data,year, month, day.beg, day.end, shw, r=NULL,

Ralpha=NULL, Delta=NULL, k, c=1) calculates the

average zenithal hourly rate (ZHR) of a meteor shower

for a given rate data, specified shower, period of days,

population index, length of time interval and ZHR

correction. The average zenithal hourly rate is given by

the formula

k

i i

ieff

k

i

i

C

T

nc

ZHR

1

,

1

where k is the number of observing periods, in - the

number of meteors seen during the observing period i,

,eff iT - the effective time or amount of time an observer

actually scans the sky for meteors during the observing

period i, and iC – a correction factor.

In the numerator, c is included to correct for the

asymmetric high and low end possibilities in a Poisson

distribution (Bias, 2011.). By default, it is set to 1.

The standard error of the average zenithal rate is

calculated by the formula

k

i

inc

ZHR

1

The spatial number density of meteoroids producing

meteors of magnitude at least 6.5 is (per 10
9
 km

3
)

(Koschack and Rendtel, 1990a)

Vr

ZHRr
82.11787003600

)15.1265.10(

where V is the stream's geocentric velocity.

The standard error of the spatial number density is

approximated with

ZHR

Day is divided in subintervals of k hours. For example,

if k=12, subintervals are)12,0[and)24,12[. Zenithal

hourly rate is calculated for each subinterval in the

following manner: If middle of observer's time period

belongs to the subinterval, his/hers data values are used

in calculation of ZHR.

For example, if we want to select visual meteor data for

observation of Orionids, period 20-24th October 2006,

12 hours’ time intervals, and calculate ZHR

rateOri <- filter (rate06, shw="ORI",

year =2006, month=10, day.beg=20,

day.end=24)

zhr (rateOri, year=2006, month=10,

day.beg =20, day.end=24, shw="ORI",

r=2.5, k=12)

4 Proceedings of the IMC, Giron, 2014

 pop.index (data, year, month, day.beg,

day.end=day.beg, shw, mag=-6:7) calculates population

index of a meteor shower for a given magnitude data,

specified period of days and magnitude values.

Cumulative summarized magnitude distribution)(m

is formed by summing cumulative frequencies of all

observers for each magnitude class m.

Using the relationship
)(

)1(

m

m
r

 and substituting 0,

1,...,m magnitudes, equation mrm)0()((or

rmm ln)0(ln)(ln in logarithmic form) can be

written. Then, population index r is calculated by the

method of least squares, for chosen range of magnitude

values.

Standard error of population index is approximated with

n

i

i

n

i

i

r

mn

e

r

1

2

1

2

)2(

where n is number of magnitude values, ie regression

residuals, i=1,2,…,n.

The interval for regression is chosen such that: there is

at least 3 meteors per magnitude class, the faintest

magnitude classes are not included (4m or in

exceptional cases 5m) and there are at least 5

magnitude classes available (Koschack and Rendtel,

1990b). All these conditions are fulfilled for the range

of magnitude values printed in results.

To select magnitude data for observation of Perseids,

time period 1-20th August 2007 and calculate

population index using magnitudes -6 to +4, we would

type

magnPer <-filter (magn07, shw="PER",

year=2007, month=8, day.beg=1,

day.end=20)

pop.index (magnPer, year=2007,

month=8, day.beg=1,

day.end=20, shw="PER", mag=-6:4)

Drawing graphs functions
We have two functions of this type.

 mag.distr (data, year, month, day.beg,

day.end=day.beg, shw) graphically represents

magnitude distribution for a given magnitude dataset,

specified meteor shower and period of days. It returns a

plot of summarized magnitude distribution consisting of

histogram and box-plot.

For example, to select data for observations of Perseids,

period 12-14th August 2007 and make a graphic of

magnitude distribution, we would type into R console

magnPer <-filter (magn07, shw="PER",

year =2007, month=8, day.beg=12,

day.end=14)

popI.distrib (magnPer, year=2007,

month=8, day.beg=12, day.end=14,

shw="PER")

 zhr.graph (data, year, month, day. beg,

day.end=day.beg, shw, r=NULL, Ralpha=NULL,

Delta=NULL, k, c=1, type=c ("UTC", "sol"))

represents graphically the average zenithal hourly rate

of a meteor shower with error bars for a given rate

dataset, specified shower, period of days, population

index, length of time interval, ZHR correction and a

type of x-axis display.

For type="UTC", the tick marks on the x-axis represent

coordinated universal time (UTC), set k distance apart,

with labels specifying date (at 00:00 UTC). For

type="sol", the tick marks and the labels on the x-axis

represent the solar longitude, corresponding to the

above mentioned time in UTC.

Function zhr.graph returns the xy plot of the Zenithal

Hourly Rate, with time (UTC) or solar longitude on the

x-axis and the ZHR on the y-axis. The ZHR is

represented with black filled circles with 68%

confidence intervals/one sigma error bars.

For example, to select data for observations of the

Orionids, period 20–26
th

 October 2006, 6hrs time

intervals, and to generate a ZHR graph we would type:

rateOri <-filter (rate06, shw="ORI",

year =2006, month=10, day.beg=20,

day.end=26)

zhr.graph (rateOri, year=2006,

month=10, day.beg=20, day.end=26,

shw="ORI", r=2.5, k=6, type="UTC")

4 MetRApp – Java Application

The motivation for this application aims to provide a simple

user interface to the R package and to allow all users to use

its functions without any necessary knowledge of R.

Currently, it is developed only as a desktop application, but

with potential to be moved to the web.

User experience

This application uses a standard graphical user interface to

communicate with users. The setup needed for runtime is

only to provide the paths for the installation of R and other

Proceedings of the IMC, Giron, 2014 5

resources needed to run the application (datasets, tables

etc.).

Software architecture of MetRApp

This application is developed using standard three tier

architecture. All compiled versions and the application are

available at the link given in section 2 and it can be

independently developed by other organizations. The

application is developed using Java 7 and Netbeans IDE.

The version control software is git and the repository host is

Bitbucket. A short description of the software architecture

of this application is provided too, as a starting point for

any potential efforts.

Data tier

MetRApp does not maintain any data in the databases since

its function is to be a proxy between the R package and the

users. However, since the results of the execution of the R

code are contained in R data structures, appropriate domain

classes have to be implemented in MetRApp.

In this case, a domain class for the R data frame has to be

implemented. Three Java classes are implemented to

provide an appropriate representation of data from the R

data frame – abstract class DataFrame, and two classes

which extend the previous one – StringDataFrame and

DataFrameFromCSV. More details about domain classes

are provided in the documentation on the project’s

repository.

In addition to these domain classes, more of them had to be

implemented for the IMO data. These new classes are a

representation of, for example, persons or sites instances in

the corresponding datasets. Also, the R code which is used

to evaluate data is inserted in the class InitialRCode.

Logic tier
The logic part of this system is implemented in several

packages. The first part contains filters for the selection of

data which correspond to the previously explained R filters.

These ‘Java filters’ had to be implemented to avoid

unnecessary parsing of data in the communication between

MetRApp and MetFns. This approach allows very fast

filtering of data which is done in MetRApp only, without

calling R code. However, only 11 of the 13 filters could be

fully implemented in Java because of the dependency to

third – party functions available exclusively in R for some

filters.

The architecture of this package is very basic – there is an

abstract class JavaFilter which is then extended by concrete

filters which implement the logic of the appropriate R filter.

This abstract class has reference to the current dataset

which is used in the application runtime, and also provides

the abstract method which accepts HashMap of parameters

which are needed for a concrete filter to be executed.

As stated before, MetRApp calls R functions to evaluate

data and returns the result to the user. This communication

is achieved using RCaller
8
, a software library for calling R

functions within Java programs. The idea behind RCaller is

very simple – the Java program (in this case MetRApp) is

the caller and it sends requests (containing R code and data)

via XML and accepts responses, again in XML format.

The logic tier of the application also contains a few

controllers which are responsible for dispatching calls

between objects and for providing an essential backbone for

all implemented functionalities. The controllers have also

references to all data sources and they provide a control on

their correct usage.

Presentation tier

As stated before, this application uses a standard graphical

user interface platform. It is based on Swing components,

without any additional customization (and dependencies).

The structure of the presentation tier is not very well

optimized, since new efforts were made to move this

application to the web.

Future improvements

A very large part of the application is implemented using

software patterns which provide a large flexibility and very

much simplify the implementation of new functionalities.

Six software patterns were implemented in the application,

but not all of them are currently used.

Requests for new functionalities are welcome, as well as

reviews of the current version of the software. Our group

will continue to develop this software, but also support new

initiatives by branching this code base.

5 Conclusion

The developed software covers a vast majority of use cases
9

specified by our meteor observation group. Due to its

modular architecture, it is possible to expand the

application specification and to provide additional features

if needed. All resources including source code, test

examples, documentation and other files are provided at

public repositories, and everyone can develop their specific

distribution of this software. We hope that other IMO

observers will find our software useful. However, if new

features are requested, we shall try to implement them in

new releases of our software.

Acknowledgment

We would like to thank Branislav Savić whose suggestions

and comments were invaluable in developing our software.

8 https://code.google.com/p/rcaller/
9 http://en.wikipedia.org/wiki/Use_case

6 Proceedings of the IMC, Giron, 2014

References

Bias P. V. (2011). “A Note on Poisson inference and

extrapolations under low raw data and short interval

observation conditions”. WGN, Journal of the IMO,

39, 14–19.

Koschack R. and Rendtel J. (1990a). “Determination of

spatial number density and mass index from visual

meteor observations (I)”. WGN, Journal of the IMO,

18, 44–58.

Koschack R. and Rendtel J. (1990b). “Determination of

spatial number density and mass index from visual

meteor observations (II)”. WGN, Journal of the

IMO, 18, 119–140.

Rendtel J. and Arlt R., editors (2008). IMO Handbook For

Meteor Observers. IMO, Potsdam.

Steyaert C. (1991). “Calculating the Solar Longitude

2000.0”. WGN, Journal of the IMO, 19, 31–34.

