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Automatic meteor detection is an important activity in the field of meteor studies. In recent years, various studies have 

been made on this topic, underlining the interest for the automatic detection of meteors in radio or video recordings of 

the sky. 

In this paper, three novel automatic meteor detection solutions using artificial neural networks are presented. The 

proposed solutions are trained to analyze radio recordings and extract the meteor samples found within. Two different 

types of neural networks are tested in this paper, each having its own take on how it detects meteors. Test results 

report high meteor detection rates on average, of above 70% for all three techniques. 

1 Introduction 

On its path around the Sun, Earth interacts with a large 

quantity of small space objects, be it dust grains or small 

rocks. These spatial objects, called meteoroids, hold useful 

information about our Solar System and therefore it is 

useful to study these to better understand our cosmic 

neighborhood. One important activity in the field of meteor 

studies is the actual detection of meteors. Although a part of 

the meteor identification is still done manually, several 

studies on automatic meteor detection have been made in 

recent times. There are several advantages with the 

automatic detection of meteors, ranging from ease of access 

to meteor data, to a more in depth understanding of meteor 

showers, all the way to meteor tracking and retrieval. 

In the present paper, three automatic meteor detection 

techniques and their performances are presented. All three 

techniques employ artificial neural networks (ANNs) to 

analyze a given set of recordings, and to extract those 

samples of the input set that they detect as being meteors. 

Two types of neural networks are used in this study, the 

classic Multi-Layer Perceptron (MLP) network and the 

Self-Organizing Map (SOM). These two types of ANNs are 

used to analyze data coming from two types of radio 

recordings: raw audio data and spectrograms of the radio 

recordings. 

2 The automatic meteor detection 

techniques 

Detecting meteors in an automatic fashion means to be able 

to extract a small number of data samples from a much 

larger input dataset through an algorithm that is able to 

recognize the meteors from any other type of signals. 

Furthermore, the detection process has to be fast enough to 

be considered as a replacement for the manual detection of 

meteors. These requirements have led to choose neural 

networks as the algorithms that will tackle the automatic 

meteor detection problem. 

ANNs are mathematical models of the biological neural 

networks found in the human nervous system. They 

emulate most of their biological counterpart’s functions and 

structure. An ANN is a collection of interconnected 

neurons, which resemble the biological neurons and 

function in a similar manner. The ANNs need to be trained 

in order to solve the problem that they are used for, which 

means they have to be exposed to the object of their work 

(i.e. in the case of this study, to meteors). In light of the 

way they are trained, ANNs can be separated in two 

classes: supervised training ANNs and unsupervised 

training ANNs. In the present study, a network from each 

of the two classes was chosen to be used in the automatic 

detection of meteors. 

Self-organizing maps 

The first type of neural network trained in this study is the 

self-organizing map (Kohonen, 1990), (Kohonen, 2001), 

(Roman and Buiu, 2014). This type of ANN is a 

competitive learning neural network that clusters data onto 

a two-dimensional topographic map of neurons. The input 

data is clustered based on similarity, which leads to the 

formation of several regions within the self-organizing map 

where alike samples are grouped together. Depending on 

the problem at hand, the SOM’s clustering, and the regions 

that are formed within the map, are an indication of the 

number of distinct objects that the neural network has found 

in the input dataset. A visual representation of a SOM 

network is presented in Figure 1. 

The SOM is trained using an unsupervised, competitive 

algorithm that searches which neuron in the network is the 

most similar (i.e. having the smallest distance) to the input 
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sample, and trains only that neuron and its closest 

neighbors, with the learning rate and neighborhood distance 

decaying in time. The end result of a SOM is a 2D map in 

which data is clustered based on similarity (i.e. similar 

inputs will be mapped in the same region of the output 

map), therefore no previous knowledge about the input 

samples is required, hence the unsupervised nature of the 

training algorithm. 

 
Figure 1 – Simple visual representation of a self-organizing map. 

The advantages of using a SOM are the visual end result 

that this neural network provides, the ability to work with 

unlabeled data and the training algorithm that the SOM 

uses, which requires no previous knowledge about the 

training dataset. 

Multi-layer Perceptrons 

The second type of neural network used in this study is the 

MLP (Rumelhart and McClelland, 1986) network, which is 

one of the oldest types of neural networks. Compared to the 

SOM network, the MLP uses a different type of training 

algorithm and a different strategy of analyzing data. A MLP 

neural network uses supervised training algorithms, which 

require the network to be taught what types of data it has to 

be able to recognize. In figure 2 a visual representation of a 

typical MLP neural network is shown. 

 

Figure 2 – Typical visual representation of a multi-layer 

perceptron. 

The algorithm used to train the MLP networks in this study 

is the backpropagation algorithm. This technique implies 

that a sample is fed to the network and it will pass from 

layer to layer, going through to the output layer. The output 

of the network will be compared to the expected output 

(hence the supervised nature of the training algorithm) and 

the difference between the two (i.e. the error) will be 

propagated backwards into the network, modifying the 

neurons, and thus training the network to know how to 

respond to that type of input in the future. When the 

training is finished and an input is given, the MLP network 

will analyze the input and identify which class of signals 

(among those used to train the network) the input is part of. 

The main advantages of using MLP networks are the speed 

of training and the simple and easy to read output that the 

network provides. 

3 Results 

As previously mentioned, three automatic meteor detection 

techniques are tested in this study. Using each of these 

techniques involves going through a three step process: 

preparing the input data for usage, training the neural 

network and testing the network’s performances in meteor 

detection. 

Two types of inputs were used in the present study. The 

first type was the raw audio recordings of radio data. These 

types of recordings involved two preprocessing steps before 

they were used to train ANNs. The first process was a 

filtering process, through which parts of the spectrum were 

eliminated from the recording (due to the fact that those 

parts never contained meteor samples), while the second 

process was a sampling process, after which the recording 

was broken into 0.1 second long samples, while the 

sampling process sliding window was 0.05 second long. 

These sampling process parameters were chosen because it 

was observed that most meteor samples are at least 0.1 

second long. In Figure 3, an example of a filtered audio 

recording is presented. 

 
Figure 3 – Example of a filtered audio recording used for training. 

The second type of inputs is the spectrograms of the radio 

recordings. The advantage of a spectrogram is that it offers 

a better visual representation of the recordings and a better 

way to manually detect meteors. As with the previous type 

of recording, the spectrograms were filtered and sampled 

too. The filtering took out the same uninteresting parts of 

the spectrum, while the spectrogram was sampled on its 

vertical side, due to the fact that meteor signals have a short 

duration, therefore they mostly appear as thin, vertical lines 

in the spectrogram. A spectrogram like the ones used for 

training is presented in Figure 4. 
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Figure 4 – Example of a spectrogram used for training. 

 

The three proposed automatic meteor detection techniques 

tested in this study involved training a SOM neural network 

using raw audio samples, training a MLP network using the 

raw audio samples and training a MLP neural network 

using the spectrogram samples. 

The first technique to be tested was the SOM trained with 

raw audio samples. The training dataset for this type of 

neural network was made of 25 audio recordings, each 5 

minutes long, that were processed as mentioned above, 

after which they were fed to the SOMs for training. This 

training set contained approximately 140 meteors. The 

several SOMs that were trained had different sizes, 

containing between 50 and 200 neurons, but all had been 

trained for a fixed number of 1000 training epochs. The 

best results were obtained with an 8x16 network (Roman 

and Buiu, 2014), which is presented in Figure 5. The plot 

shown there represents the SOM’s hits plot, where each 

hexagon is one of the network’s neurons and the numbers 

inside represent the number of input samples mapped to 

each neuron. 

Once the SOM was trained, a test was made to check its 

performance. The test dataset was built using 6 audio 

recordings that contain 14 meteors, which were sampled as 

previously described. To these inputs, another 58 samples 

of known meteors were added. The results of this test are 

presented in Table 1. These results show that the proposed 

solution has promising potential of automatically detecting 

meteors, although it is not fault free, which is obvious 

because of the relatively large number of false alarms (i.e. 

the false positive rate, which represents the number of non-

meteor samples that the neural network detected as being 

meteors). 

Table 1 – Results of the test with the proposed SOM network. 

Meteor samples Non-meteor samples 

True 

Positive 

Rate 

True 

Negative 

Rate 

False 

Positive 

Rate 

False 

Negative 

Rate 

90.28% 9.72% 10.81% 89.19% 

 

The second technique to be tested was the MLP trained 

with raw audio samples. To train this network, a training set 

was built with 230 meteor samples and 200 non-meteor 

samples. The MLPs trained were built with quite similar 

architectures, the only difference being the number of 

neurons in each MLP’s hidden layer. Thus, the MLP 

networks were built with 551 neurons in the input layer and 

2 neurons in the output layer, while the number of neurons 

in the hidden layers varied between 50 and 200. 

The dataset used to test this technique was built with 161 

meteor samples and 11536 non-meteor samples. This 

dataset was fed to the different MLPs, with the 

performances of the neural networks being presented in 

Table 2. These results show that the proposed solution has 

the ability to recognize meteors from a given dataset, but 

similar to the SOM case, it falsely deemed a good number 

of non-meteor samples as being meteors. Similar to the 

SOM solution, even though the percentage of false alarms 

was not large compared to the percentage of positive non-

meteor detection, the number of non-meteor samples falsely 

detected as being meteors was larger than the number of 

meteors correctly detected.  

Table 2 – Results of testing the MLPs trained with audio samples 

Meteor samples Non-meteor samples 

True 

Positive 

Rate 

True 

Negative 

Rate 

False 

Positive 

Rate 

False 

Negative 

Rate 

86-93% 7-14% 10-24% 76-90% 

 

The third technique proposed in this study involves the 

training of MLP neural networks using spectrogram 

samples. To test this technique, a new training set was built 

which contained 600 meteor samples and 500 non-meteor 

samples. As with the previous proposed technique, various 

MLP networks were trained using this training dataset. The 

neural networks were built with 595 neurons in the input 

layer, 2 neurons in the output layer and a varying number of 

neurons in the single hidden layer. 

Table 3 – Results of testing the MLPs trained with spectrogram 

samples 

Meteor samples Non-meteor samples 

True 

Positive 

Rate 

True 

Negative 

Rate 

False 

Positive 

Rate 

False 

Negative 

Rate 

70-77% 23-30% 46-60% 40-54% 

 

For this technique, the test dataset was built with 245 

meteor samples and 200 non-meteor samples. Depending 

on the size of the trained MLPs, the results obtained after 

testing are presented in Table 3. Compared to the previous 

two techniques, this one shows lower performances, 

especially in regards to the false positive rate (i.e. the 

number of non-meteor samples that are deemed as being 

meteors by the neural network). 
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Figure 5 – The resulting self-organizing map. 

 

4 Conclusions and future work 

The three techniques presented within this study all show 

promise in the field of automatic meteor detection. All of 

them offer high detection rates, which allows for the 

extraction of the majority of meteors from a given test 

dataset. The only problem, recurring with all three proposed 

techniques, is with the quite high (in actual number of 

samples, not in the overall percentage) false positive rate, 

especially in the case of the MLPs trained with spectrogram 

samples. The size of the problem is more obvious when we 

compare the numbers behind the true positive and false 

positive rates. As for the reasons behind these high false 

positive rates, there are several possibilities: the size of the 

sampling window, size of the window’s slide, or the 

similarity between meteor signals and non-meteor artifacts 

(e.g. planes). 

However, despite the problems with the false positive rates, 

the three proposed techniques are decent solutions to the 

problem of automatic detection of meteors. Each technique 

has its own advantages that make it a good candidate. The 

SOM networks offer an easy to interpret, visual output. 

This has the great advantage of being able to work with 

unknown or unlabeled data because the SOM network gives 

verdicts based on the similarity of data and not on previous 

knowledge about it. The MLPs are easier to train than a 

SOM and offer a very precise output. Furthermore, their 

supervised training algorithm insures that the neural 

networks know what a meteor looks like. Above all, a 

general attribute that all the techniques have is the high 

speed of making a decision, each neural network requiring 

only a brief moment to check a given input and deciding 

whether it is a meteor or not. 

As for future work, the main focus will be on improving 

detection rates and lowering the false positive rate, thus 

allowing the three proposed techniques to detect more real 

meteors and to eliminate fake warnings. To tackle these 

issues, changes will have to be made in several areas such 

as: the sampling of the data (changing the sampling window 

size or slide), size of the neural networks, length of their 

training or depth of the networks (in the case of MLPs). 
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