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A meteor propagation model based on fitting the
differential equations of meteor motion

Peter S. Gural

351 Samantha Drive, Sterling, Virginia 20164-5539, USA
peter.s.gural@saic.com

The differential equations that describe meteor motion through the atmosphere during the time of
luminous flight does not have a closed-form solution to the state propagation vectors. Presented
herein is a preliminary model that is an approximate parameterization to the integral solutions that
are strictly dependent on the mass loss parameter 3. The resultant model for position, and thus
velocity, as a function of time and [, can be used to fit meteor and fireball trajectories that show
deceleration over the entire visible duration of the flight profile.

1 Introduction

The deceleration of a meteor through the atmosphere
has been discussed in a number of papers that describe
the classical physical behavior through a set of dynam-
ical equations of motion (e.g., Pecina and Ceplecha,
1984; Gritsevich, 2009; Gritsevich and Koschny, 2011).
The resultant solution for the velocity propagation, how-
ever, has only been derived down to a complicated ex-
pression for the differential equation of velocity with
respect to time. The integral equation thus obtained
from the dV/dt expression has not been shown to have
a closed form solution. Thus to fit the state vector mea-
surements of a decelerating meteor, one has to resort
to iteratively solving the differential equation or use a
simpler model for velocity, such as one that is constant
V =V, or exponential in time V = Vp — Ckexp(kt)
(Whipple and Jacchia, 1957). Since these simpler mod-
els may not be valid over the entire duration of a deeply
penetrating fireball, meteorists often resort to fitting
them over shorter time segments and linking the solu-
tions together. Thus, it would be desirable to find a
more general expression for the propagation that would
permit a single fit along the entire luminous flight path.
This can also be used as a meteor propagation model for
fully-coupled multi-camera trajectory estimation (Gu-
ral, 2012).

2 The integral equation for time and
velocity

The basic differential equations for drag and mass loss
will not be repeated here, but can be found in the paper
by Gritsevich (2009), and the nomenclature follows that
paper’s convention. Under the assumptions of no de-
flection from straight line path, isothermal atmosphere,
and power-law relationship between shape and mass,
that paper derives the differential equations for mass-
versus-height and velocity-versus-height. The resultant
equations are found to be dependent on only three di-
mensionless parameters: the ballistic coefficient «, the
mass loss parameter (3, and the shape-to-mass power

exponent u. Furthermore, a differential equation for
velocity dV/d¢ was also derived, that is dependent on
the entry velocity V;, the trajectory angle ~, the atmo-
spheric scale height hg, and the mass loss parameter (3,
as shown in equation (1), where v = V(t)/V, is the nor-
malized velocity and Ei(y) is the exponential integral®.

Ei(8) — Ei(8v?)
T ohgePt (1)

The first three parameters mentioned represent a scale
factor on the deceleration, and only the [ parameter
influences the shape of the velocity profile versus time.
This inspired an intriguing thought that a general model
for velocity could be obtained whose profile would only
be a function of time ¢ and 8. The differential equa-
tion for velocity, when reformulated into an integral as
in equation (2), relates a velocity vy to a time . Un-
fortunately, this integral does not have a known closed-
form solution. Note that the integral’s limits are 1 to
vk, representing times of 0 and t, respectively.
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For a fixed value of 3, one could perform the integration
numerically for a sequence of integral limit values vy
and build a curve of vi(tr). If a functional form for
the velocity profile could be obtained empirically, then,
by parameterizing over the potential range of 3 values,
the family of curves for v(t, 5) can be modeled, any one
of which should match a given fireball’s flight profile.
To find a model for v(t, ), the first step was to form
the set of velocity curves using a MATLAB script that
was implemented to numerically integrate equation (2).
The resulting velocity profiles as a function of time for
various ( values is shown in Figure 1, where the term
outside the integral was set to unity. The mass loss
parameter from previously measured meteors has been
found to fall in a range of In 8 between —2.5 and +3.5
based on prior results of dozens of deeply penetrating
fireballs. Those were the limits used to build velocity
curves with spacing between [ values adjusted to span
the shapes of the curves more uniformly.

LEi(y) = /Y _ v exp(u)du.

tr =

(2)




Proceedings of the IMC, La Palma, 2012

-y

o o o
-~ W W

o
m

Beta = 0.007
Beta =22

o o
F—

Mormalized Velocity (VAVinf)
o
w

o
[

.
.

D 1 L L L 1
2 3 4 9 B 7 g 9 10

Time (seconds)

Figure 1 — Velocity versus time v(t,3) profiles for various
values of 3 (8 = 0.0070, 0.7551, 1.5189, 2.2222, 2.9889,
3.7965, 4.6691, 5.8958, 8.1317, 12.6030, and 22.0027).

If an empirical formula for v(t, 3) could be determined,
then the model could be used to minimize the error
relative to actual velocity measurements and thus find
the @ value for a meteor. Alternatively, a formula for
the position = as a function of time and (§ could also
be empirically found; «(¢,5) and its derivative would
then serve as the velocity model. Either model is use-
ful because they both depend on a single parameter 3
and thus simplify the minimization of a cost function
for doing a measurement to model fit. Since the model
is most likely non-linear in nature, the single parameter
minimization should also be more robust to potential
issues with getting trapped in local minima. By inte-
grating the individual velocity profiles from Figure 1,
one obtains the position versus time curves shown in
Figure 2 for the same set of 3 values.

Beta = 0.007

a5}

481

35¢ Beta =22 ]

Along Track Down Range
=

281 b

2 1 1 L L
2 3 4 4] g 7 g 9 10

Time (sec)

Figure 2 — Position versus time z(¢, 3) profiles for various
values of B (8 = 0.0070, 0.7551, 1.5189, 2.2222, 2.9889),
3.7965, 4.6691, 5.8958, 8.1317, 12.6030, and 22.0027).

The position profiles show a slow change in time for
small values of the mass loss parameter 0 and an in-
creasing abrupt and discontinuous break as the mass
loss parameter grows to greater than 5. These high 3

cases correspond to fireballs that catastrophically dis-
integrate as if they have slammed into a brick wall and
very rapidly reached terminal velocity. But they also
represent the most difficult to build a general propaga-
tion model for, because of the abrupt change in velocity.
Continuous functions do not behave this way and are
associated with ringing artifacts when trying to fit to
sharp corners in data. At a minimum, the desire will
be to find a monotonic and single-valued function with
time.

3 Finding a model for position versus
time

The simple expressions for meteor propagation, be it
linear x = Vit or with an exponential term x = Vit —
Cexp(kt), are not descriptive of the curves shown in
Figure 2 for long-duration or significantly decelerating
meteors (high ( values). Since the integral equation
is intractable, one could try to guess at a reasonable
formula, but this approach too was found to be nearly
impossible.

However, it turns out there is a software tool on the
web for discovering underlying mathematical expres-
sions in data. It is called EUREQA FORMULIZE for ver-
sion IT (Schmidt and Lipson, 2009) and is billed as a
software tool for detecting equations and hidden math-
ematical relationships in your data. The software at-
tempts many permutations of mathematical combina-
tions of basic functions and builds on formulae with the
most promising residuals relative to the measurements.
It combines, trims, and mutates function combinations,
ultimately trying to find the simplest mathematical for-
mula which could describe the underlying data.

The FORMULIZE software was attempted on the posi-
tional data curves z(t, 3) obtained by integrating the
velocity profiles rather than applying FORMULIZE di-
rectly to the velocity profiles v(t, 3) themselves. This
was preferred, since taking the derivative of z(t, 3) later
was deemed simpler for formulating an analytic velocity
model after the positional model equation was obtained.
The program was run for several weeks on a single CPU
and, at the time this paper was written, had not found
the optimal solution, but several potential expressions
had arisen from the process.

Most of the formulae that the application seems to grav-
itate to, revolve around an exponential model where the
exponent term has an inverse time dependency. FOR-
MULIZE was found to have the greatest difficulty with
the high [ curves where the deceleration of the me-
teor happens very abruptly over short time scales. It
was found that running FORMULIZE on each [ case
separately allowed for quicker convergence to a generic
model, and, then, that model had its coefficients fit as
a function of 8. The following model has generated the
best fit thus far, but we must emphasize this is still a
work in progress and the model presented should there-
fore not be construed as the final best answer.
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4 Fit performance

By the time of the IMC in September 2012, the result
obtained from FORMULIZE was a good representation
of the position propagation for [ values less than 3.
In equations (3)—(11), the position parameterization is
shown as a function of time and [, where each c¢; coef-
ficient is itself a polynomial function of 5. Again, these
values and formulae should not be taken as final. The
residual plots of Figure 3 are shown up to 3 = 4 since
the coefficient fits for ¢; were only valid up to that value.
So, we found

c1 + CQt

cstcgt ?
+cst
c3 + cqe cr+et

(3)

where

c1 = +0.34087 + 2.651713 (4)
c2 = —0.50104 — 2.66213 + 0.898175° — 0.0979263>  (5)
c3 = +0.81913 + 4.20463 — 154283 + 0.166623°  (6)
¢4 = +19.548 + 109.158 — 41.522° + 4.001343> (7)
cs = +179.04 + 425.618 — 65.5343° (8)
c6 = +28.46 — 77.08343 + 9.11223 (9)
cr = +45.027 + 129.668 — 228.043% + 223.163°
—124.538" + 39.1198° — 6.44183° + 0.429783"
(10)
cs = +0.40731 + 0.0332793 (11)
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Figure 3 — Position residual (normalized units) versus time
Zmodel (t, 3) — x(t, 8) for various values of 8 (8 = 0.7551,
1.5189, 2.2222, 2.9889, and 3.7965).

5 Conclusion and next steps
A preliminary model for meteor motion propagation has

been obtained from the differential equations describing
meteor ablation dynamics. This includes a position and

velocity model as a function of time and mass loss pa-
rameter 8. It currently is valid up to g values of 3 which
represents about 80% of deeply penetrating fireballs en-
countered thus far. Further refinement of the model is
a work in progress with the hope that a simpler expres-
sion can be obtained.

One issue is finding a model formula to handle the near
discontinuity in the high 8 curves. One path may be
to have two models that smoothly overlap the regimes
of low @ and high 3. An attempt at finding a good
model for high ( is the goal for the next phase of the
FORMULIZE runs. Another aspect that will be pursued
is that the exponential integral function may need to
be used as a formula within FORMULIZE. This is be-
ing investigated as a possibility. A third approach is
to remove the terminal velocity portion of the position
curves that FORMULIZE is trying to work on. They were
put in to see if the long constant velocity tails could help
bound the behavior of the functions fitting the deceler-
ating sections of the curves. However, an alternative is
to assume we only have to fit over the luminous flight
portion of the track. Thus finding an expression that
may be able to bend abruptly for high mass loss pa-
rameter but behaves poorly after the bend in the data
may be adequate, because we would never be fitting the
model to dark flight measurements. So long as the func-
tion behaves well during luminous flight measurements,
the model should work seamlessly within the trajectory
fitting application.

References

Gritsevich M. I. (2009). “Determination of parameters
of meteor bodies on flight observational data”. Ad-
vances in Space Research, 44, 323-334.

Gritsevich M. I. and Koschny D. (2011). “Constraining
the luminous efficiency of meteors”. Icarus, 212,
877-884.

Gural P. (2012). “A new method of meteor trajectory
determination applied to multiple unsynchronized
video cameras”. Meteoritics and Planetary Science,
47, 1405-1418.

Pecina P. and Ceplecha Z. (1984). “Importance of atmo-
spheric models for interpretation of photographic
fireball data”. Bull. Astron. Inst. Czech., 35, 120—
123.

Schmidt M. and Lipson H. (2009). “Distilling free-form
natural laws from experimental data”. Science,
324, 81-85.

Whipple F. L. and Jacchia L. G. (1957). “Reduction
methods for photographic meteor trails”. Smithso-
nian Contributions to Astrophysics, 1, 183-206.



