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A computer program developed by Esko Lyytinen is currently in use for trajectory analysis
of meteors collected by the Finnish Fireball Working Group. This paper provides instructions
for its use along with processing examples from different phases of the calculation. The pro-
gram is written in Microsoft Excel and it is available for download via the following link:
http://lyytinen.name/esko/fb entry vers 1.zip.

1 Introduction

Trajectory analysis of meteors ablating in the Earth’s
atmosphere is a precursor to orbit parameters estima-
tion and association with parent bodies in the Solar
System. A spreadsheet program for trajectory estima-
tion written for Microsoft Excel will be described by
walking through several problem sets. The test exam-
ples have been generated from real fireball cases, but
there is no assumption that the data are the latest
checked best measurements available. The first exam-
ple is based on a classical type deceleration model al-
gorithm (“base model”), and we provide explanations
and instructions for running this case. Later on, new
examples are added, such as including a better decel-
eration model based on an approximate formula of the
analytic solution of the meteor dynamic equations. It
is however preferable to get familiar with the less ad-
vanced modeling method first, because the higher fi-
delity model is only applicable to some meteors. The
advanced methodology is best applied to video data
where each frame’s direction is available from at least
one station.

Besides the advanced deceleration treatment, there are
also many special cases for which it will be useful to have
special examples, e.g., single-station meteors, when spe-
cial “tricks” must be used. An example are apparent
fall-angle observations where only limited knowledge
of the actual azimuth propagation is known. Further-
more, low-altitude angle observations from all-sky cam-
eras may have the altitude calibration of poorer quality
than the azimuth calibration. For simultaneously timed
observational data (e.g., from video records), only the
azimuth directions could be utilized in deriving solu-
tions with other station data.

Such “tricks” will require the user to edit the Excel

spreadsheet. Thus, experience using Microsoft Excel

or a similar program is preferable. Even in normal me-
teor cases, new observation rows need to be generated
(copied), to replace the old ones (from the base model),
and the mutual timing data may need to be adjusted.
Through direct manipulation of the spreadsheets, it is
hoped that the user will obtain a good understanding of
the principles of the program, instead of automatically
following the procedures. The program includes essen-
tial algorithmic components explained in published pa-
pers and online resources (Ceplecha, 1984; Gural, 2012),
while other resources are complementary. As an ex-
ample, we refer to the spreadsheet List which allows
one to calculate orbital elements from a meteor’s radi-
ant position and speed1 and its associated publication
(Langbroek, 2004).

Our first base model example is described in the fol-
lowing section. This example then is followed with the
general functioning and principles of the program.

2 First example fireball 20120727 at
23:45:25 UT (yyyymmdd format)

This first case may be considered “ordinary” and was an
expected small meteorite dropper. According to some
visual observations, there was evidence for fragmenta-
tion, which cannot be seen in the video sum-image data.
This was previously modeled to have the biggest frag-
ment to be of 0.15 kg in mass and chondritic density of
3.5 g/cm3.

There are data from four stations available, although of
different accuracy. Thus the observations were weighted
accordingly, and in our final solution, data from only
two stations (Mikkeli and Joutsa) were effectively used.
Now we will walk through the program steps.

1http://marcolangbroek.tripod.com/metsoft.html.
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2.1 General lay-out of the program

To follow along, we invite the reader to open with MS
Excel the spreadsheet fb entry 20120727.xls.

At this time, everything may not be very logically situ-
ated due to historical reasons in the development. Cells
colored red are calculated automatically according to
given formulas and should therefore not be altered. The
exception are the observation rows, which can be added
for a new case by copying existing lines and/or deleted.
In general, all colored shells (e.g., marked in violet) re-
quire caution. Each directional observation requires its
own row.

Column O from rows 6 to 41 (in this example) with
some free space in between contains the unknowns. The
actual calculations are done in a Cartesian coordinate
system that has the x, y plane tangent to the Earth
(sea-level) surface, the tangent point being the origin of
this x, y, z coordinate system. The Earth is modeled as
an ellipsoid. Cells C2 and C3 contain the coordinates of
the origin. The coordinates of the origin and observ-
ing site are given in decimal format of longitude and
latitude, with East and North positive. Here, we are
using WGS84 coordinates, but this is not critical if all
processing and measurements are in the same system.

The shell A10 is one of the program’s key shells, where
the resulting value must be minimized by the Excel

solver. In the sheet-region between C5 to J15, we have
included some helpful calculations for the expected me-
teorite impact site. This is not essential to this sheet,
however, because the full use of these calculations re-
quires input from other programs dealing with ablation
rate and dark flight simulation. The observing site co-
ordinates are given in columns C and D, and the height
above sea level (kilometers) in column B. Columns K and
L contain the observed azimuth and altitude angle ob-
servations. The station locations are converted to the
Cartesian x, y, z coordinate system (columns H, I, and
J), and also the angular directions are transformed into
this system as well (columns M and N). All x, y, and z
values are given in kilometers. Column O has the timing
of each observation, the values of which are dependent
on the unknowns (shell O57 is linked to cell O12). The
cells O58, O59, etc., are linked to their predecessors. In
the Mikkeli data, every fifth video frame was measured
from a sum-image (peak-hold image) that showed ev-
ery fifth frame of the PAL video. The Joutsa data are
similar.

Column P contains the time altered for deceleration cal-
culations. The calculations are actually performed as if
having a constant velocity (originally from cell O6) ac-
cording to the “time” in column P. The linking of O and
P values yields an approximation of the deceleration.

The unknowns O7, O8, and O9 define one point in the
track. It is reasonable to fix one of these and look for
the other two in the solution. In most instances, the
value of O9 (the z coordinate) is set and fixed as zero.

Thus, the values O7 and O8 (defined in kilometers) in-
dicate where the continuation of the track would cross
the ground plane. This approximates where the track
would cross the Earth surface. The approximation is
good if the cells O7 and O8 have relatively small values.
If this is not the case, after finding the solution, one has
to change the origin to (C2, D2) and solve the problem
again. The calculated geographical coordinates of this
crossing are placed in the cells P7 and P8. Cell O4 holds
the time when this ground plane crossing would have oc-
curred using the original velocity. This O4 value can be
freely selected for a solution. One can adjust this value
to ensure that all the timing values in the solution are
nonnegative and do not have big numeric values. One
can insert a value into cell J6 (taken from another pro-
gram for dark flight simulation) that refers to how far
this Earth-surface crossing is from the expected mete-
orite fall (in kilometers). Then, cells H6 and H7 will
contain the approximation of the predicted meteorite
fall location, without taking into account wind effects.
(In the region between cells C12 and F14, we further cal-
culated the wind-affected coordinates for the case when
a small-size meteorite fall has been predicted. Again,
the values in cells C12 and C14 (in kilometers) are input
parameters provided by a complementary program.)

The geographical coordinates in P7, P8; H6, H7; and
F12, F14 are calculated only approximately with scaled
coordinate shifts. The same is true for columns BB and
BC which contain the geographical coordinates of the in-
dividual observations. These are projected down along
the normal onto the x, y plane (i.e., not projected down
locally).

Thus, the treatment of original observations is accurate
for an oblate Earth.

Columns AE, AF, and AG show the calculated Cartesian
coordinates of each observation, which are converted to
geographic longitude and latitude and given in columns
BB and BC as described above.

Since z is not the actual height above sea-level, the ac-
tual height is better (and quite well) approximated at
column AH with a correction applied to the AG value.
Column AU contains individual weight values for each
observation. Only the relative value for these is impor-
tant, and we mostly use integer values. The value 100
is typically used for a good observation. Column AX

contains the total error of each observation in degrees.
Column AV has the weights multiplied by the squared
errors. Note that this error is not given in degrees.
Looking at the formulas in AV, AW, and AX, one can see
the dependency between the values in column AT and
the degree values. The cell A10 (the one which has to
be minimized) has the sum of the values in column AV.

To summarize, the main principle of the program can
be stated as follows.

Values of the unknowns (at column O) define the model-
based direction for each observation. These are com-
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pared to the actual observation directions. And the
(weighted) sum of the squares of the errors is minimized
by means of the Excel solver. Once solved the result
is a single entry track obtained from these observations.

The column BI has dimensionless velocity values, de-
fined as the ratio of velocity to its entry value (given in
cell O6). The column BJ shows velocity in kilometers.
These values are the mean values between the previous
sight-line and line in question (as seen in the calculation
for cells in column BI). Column BK contains the absolute
deceleration values (where applicable). This requires
the successive rows (around the ones under considera-
tion) to have the timing difference as constant, though
corresponding formulae can be adjusted further when
needed. The absolute deceleration values are estimated
as a velocity difference (between the next and the cur-
rent row) divided by the timing difference. Column BL

has the height, as copied from column AH, to enable
easy comparison of the velocity and deceleration with
height.

As to the choice of deceleration model, this will be dis-
cussed in more detail later in the paper.

3 Experimenting with the program

It is possible to make one’s own convergence tests with
the solver. Please remember to save to a new file and
not to the original spreadsheet in order not to acciden-
tally over-write it.

Open the sheet. On the Excel Tools menu, one should
find the Solver . The solver routine is a Microsoft Ex-

cel add-in program that is available when installing Mi-
crosoft Office or Excel. To use it in Excel, however,
one must load it first following these 5 steps according
to Microsoft Office’s instructions:

1. Click the File tab, and then click Options.

2. Click Add-Ins , and then in the Manage box, select
Excel Add-ins.

3. Click Go.

4. In the Add-Ins available box, select the Solver
Add-in check box, and then click OK.

(a) If Solver Add-in is not listed in the Add-Ins
available box, click Browse to locate the add-
in.

(b) If prompted that the Solver Add-in is not
currently installed, click Yes to install it.

5. When the Solver Add-in has been loaded, the Sol-
ver command is available in the Analysis group
on the Data tab.

One can also get familiar with this function by looking
up Define and solve a problem by using Solver, a section
under the Info menu of Excel.

Now, one can select the solver by choosing Solve. The
iteration process should soon stop (once it finds the best
solution according to given criteria) and provide Solver
details. Select OK, with the Keep solver solution op-
tion. Then do some minor editing in some of the cells
containing unknowns in column O. Keep O9 set to zero.
If one decides to change the deceleration parameters in
O40 and O41, we suggest to make only relatively minor
changes, especially to cell O41. Preferably do not in-
crease the value of O41 beyond 9. After these changes,
run Solve again. Check the new result to see if it con-
verged to the one which was originally found.

One can also try changing the origin (C2, D2). Again,
make only a relatively small shift in this case. After
solving for the shifted values, one can further shift the
origin in the same direction. By making too big a shift
in one move, one may “lose” the solution.

In a solution with different origin, the O7 and O8 values
will have changed, but also the radiant directions will
have changed a bit because of the different reference
frame employed.

In this first case, the Mikkeli station was quite nearby,
so one should not change the D2 cell (origin latitude) by
more than only a few tenths of a degree at a time.

One can also test the impact of changing the value of
O4 by a few seconds at a time.

Finally, one can also consider to alter the different ob-
servation weight values at column AU, and use one’s “in-
tuitive” solution to see how much it may differ (e.g., the
impact site predictions) from the original solution.

4 The “old” deceleration model

As mentioned previously, the positions along the track
are calculated as if the meteor would have constant (at-
mospheric entry) velocity relative to the adjusted time
at column P. They are calculated from the correspond-
ing values at column O.

The formula for the adjusted time at column P is a
power-law expression with the power given (see the un-
knowns column) in cell O41. To avoid raising a negative
value to a power, we first square the timing and then
raise this positive number to the power $0$41/2. While
in the final solution we should not be dealing with nega-
tive values, they may occur during the iteration process
when the solver is searching for a solution. Our method
to deal with this possibility prevents that the solver
would stop with an error.

The position along the track follows this power-law func-
tion. Since velocity is the time derivative of the posi-
tion, the corresponding power exponent for the velocity
is one less than the power exponent for the position.

There is one more “hidden” parameter in the formulae
corresponding to column P (which now has the value
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“1” in ...+1) that defines how long before the first row
(57) timing (in seconds) the power function starts at
zero. The value used is not so critical, but it should be
somewhat before the atmosphere begins to initiate any
deceleration, e.g., just prior to the luminous trajectory
segment. This value can be changed in the formulae,
but then it must also be changed in every row (i.e.,
if changed in one line then copied to all other rows).
For a different value of the timing offset, the power (in
O41) also requires a different value. For fast, big-slope
meteors, a small value (e.g., 1 second or even smaller)
is advisable, but for slow and/or small-slope tracks, a
value of a few seconds may yield better results.

According to this formula, the deceleration continually
increases with time and typically with deeper penetra-
tion into the atmosphere. This scenario is well suited
for the case of fully ablated meteoroids. For meteorite
dropping cases, the deceleration reaches its peak within
the luminous segment of the trajectory, and its absolute
value typically decreases closer to the terminal veloc-
ity point. In this sheet, the deceleration can be mod-
eled as constant close to the end of the luminous flight.
However, this is only applicable if there are correspond-
ing spreadsheet rows with constant relatively small time
spacing. Notice that not all of these rows need to refer
to an actual observation, as one can set the weight to
zero. Assuming that there are evenly spaced rows (as
said, preferably with small time spacing) close to the
terminal fireball point, one can copy the formula from
column P46 to some of the final cells in column P. In
the example “base model” sheet, this formula has been
copied to the last row in the Mikkeli observations.

Note that there is a requirement to have at least three
rows above the one under consideration with the same
time spacing. Again, copied rows not corresponding
with actual observations are inserted with zero weight.
In practice, such rows are only copied partially, such as
row 64 in the example sheet.

If the constant deceleration formula is in use, this should
be applied to all observing stations with timed data
close to the end, and then have the constant velocity
model to start from the end of known timing measure-
ments, which can be seen only after an approximate
solution is obtained.

If the close-to-terminal-point observations from some
stations do not have timing information and only pro-
vide the track position, then there is no need to adjust
a station with the alternate constant deceleration for-
mula in column P. The timing of such observation is
in any case unknown in column O (see the Pieksämäki
observations both at row 74 and 75).

We advise it may be more reasonable to do this with
respect to a separate ablation model program. If such a
program is available, it should be used and the results
then coupled together.

The coefficient of the magnitude of deceleration (cell
O40) is evaluated from the solver solution. Therefore,

it affects the value of cell O41 as well. If the observa-
tion data are sufficiently precise for a short registered
trail, the value in O41 may not be derived sufficiently
accurate. Thus, other parameters may be unreliable as
well. To solve this problem, one may use a complemen-
tary ablation model. When the results of both models
are compared, one may manually adjust the value of
cell O41 (and decide on whether or not to copy the for-
mula in cell P46) with new tested solver solutions to
obtain an acceptable correspondence with the spread-
sheet and the externally run ablation model. In many
cases, however, it is expected that the value of cell O41
can be evaluated satisfactorily from the observational
data. Note that even a relatively small change to O41

may require a big change to O40 in order to keep overall
deceleration about the same.

It has been observed that if cell O41 has a value greater
than about 9, the solver may fail to start converging.
But if convergence has been achieved, this will probably
continue for values in cell O41 greater than 9, if needed.
In case of convergence problems, it typically helps to
enter a value smaller than 9 after modification to allow
convergence.

5 How to make the solution converge
correctly from an initial guess

The next step is to make the model converge to the
correct solution without a priori knowledge. (In case
of having difficulties with this, the solutions are copied
to column M. One should keep in mind, however, that
if the origin (C2, D2) or cell O4 has been changed, the
same solution will not apply.)

The procedure is to copy the entire original Excel

sheet, and abandon the previous solution. Now re-
adjust all the unknowns and resolve. One can proceed
without further instructions, though the guidelines be-
low may be helpful.

At first, set deceleration to zero (place “0” in cell O40;
cell O41 can be left as it is or, more generally, set to an-
other value, e.g., “7”). We attempt to get a very rough
idea of where the meteor has fallen. In the example,
it was seen to the south of Mikkeli. And as observed
from Mikkeli, it was flying from right to left, making
it roughly from west to east. Thus, enter “270” into
cell O10. If the meteor made a steep entry (as was the
case in the example), then use for O11 something in
the range from 60◦ to 90◦. If an estimate is not avail-
able, it is typically better to overesitmate the steepness
than the other way around. Therefore, the input value
of “60” is usually satisfactory. Regarding the velocity
value in the cell O6, a range of 15 to 25 km/s is rec-
ommended for meteors assumed slow, 40 to 60 km/s
for meteors assumed fast, and something in between for
meteors assumed to have an intermediate velocity. Put
“0” into O7 and O8. Put into the origin (C2, D2) a mod-
erately good approximation. Now it is possible to try
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to converge optimally to a solution. The most reliable
methodology is the following.

1. 1. Select the Solver, and solve now for only the
timing unknowns, in this example, cells O12 to
O16. (To select such a group of unknowns, there
is a special separator in Excel that may depend
on the initial user’s settings, but by default the
correct expression would be O12:O16. Other sepa-
rators (by default the semi-colon and the comma)
are used between sets of unknown variables, if
those in between are not to be used.

2. If Step 1 leads to a solution roughly looking rea-
sonable, accept it and select Solve again. Now
solve for only O7 and O8.

Repeat Steps 1 and 2 a few times. If the output
values are reasonable (e.g., do not result in too
large absolute values), one can copy this early so-
lution into an independent column, for example,
column L, if column M is already in use.

If case the next step fails, one may start again
from this saved solution without having to go back
to Steps 1 and 2.

3. Now select both the cells O7 and O8, and also the
range O12 to O16, and solve. If this still looks
promising (the cell A10 should not show a large
value), save the result again to an independent
column.

4. Add cell O11 to the ones already selected at Step 3.
(i.e., use the intervalO11:O16 instead of O12:O16).
Again, save the obtained result if it looks reason-
able. Note that one may keep only the latest or
latest two values resulting from the most recent
steps.

5. Include cell O10 to the Solver inputs and, if ac-
ceptable, save the result.

6. Include the velocity given in O6.

7. Now try with all the unknowns, except the decel-
eration value in O40. Remember not to select O9

which is left at zero.

8. If Step 7 was successful, save the result and in-
clude also cell O40 among the input values.

9. One may now also select O41 with all the others
listed above. If needed, go back to the previous
solution saved.

10. If the values in O7 and O8 are deemed too large,
then smoothly alter the origin (C2, D2).

If O7 and/or O8 show large values, the solution
itself should be correct. But since the coordinates
in O7 and O8 refer to the z, y plane crossing, the
plane may be too high up from the actual sea level
surface for a quality solution. And, thus, it may
be desirable to alter the origin site because of this
and obtain a new solution.

If the meteor path has a very small slope with respect
to the horizon, the convergence methodology may not
perform very well. And if it is a grazing meteor, whose
track does not meet the Earth surface at all, then the
above approach cannot even converge. In this case, one
must abandon the strategy of keeping O9 at zero, and
set either O7 or O8 to zero instead. It may be preferable
(but not necessary) to make a choice of this type of
meteor crossing that fixed plane more perpendicularly
than in the other alternative.

Otherwise, a similar approach is recommended to assure
that the result will converge correctly.

The above instructions can easily be tested with the
given example and/or the user’s own examples. Af-
ter some experimenting, this process normally does not
take much time, though, surely, some cases are more
difficult than others. Also, one may always try a finer
stepping in parameters in order to succeed. This can be
tried from the very beginning or at any of the numbered
steps above. Since the results from previous successful
steps are saved, one can run the failed run of Solver
again by trying smaller steps.

6 Testing with single-station data

Let us look back more closely to the data reduction
in the case of single-station data only. One can test it
using the above example by including only one station’s
data, either Mikkeli or Joutsa, to obtain the solution.
Define the weights at column AU as zero for the Siuntio
and Mikkeli stations. Then also set to zero the Joutsa
weights so that only the Mikkeli observations have none
zero weights.

When invoking the Solver, deselect the velocity O6 and
let it be fixed. Some of the timing unknowns could also
be deselected, but this is not necessary. Even if the
velocity unknowns were left to be solved, a convergence
would occur but this would yield just some arbitrary
value.

One can also leave the deceleration (O40 and O41) fixed
as if it were already derived, and just test the trajec-
tory solution. Keep O41 fixed (as derived earlier) and
let O40 vary (among the others). This means that the
magnitude of the deceleration is free to vary but the
“shape” of the deceleration curve is fixed. Finally, let
O41 be variable. The result thus obtained differs from
the originally derived one if more flexibility is given to
the deceleration. In our testing, the azimuth direction
can differ by about 30◦ in the worst case. Since the
radiant is at about 70◦ altitude, this corresponds to not
more than about 10◦ on the sky, however.

One of the above cases of flexibility for the deceleration
parameters must be selected and then tested further by
changing (by a few km/s, for example) the velocity O6

(fix it in the solution). With different values in cell O6,
this should provide a result with similar values for the
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direction parameters O10 and O11. For every case run, a
beginning height value is calculated in cell AH57. Alter-
nate solutions can be obtained with different values of
O6, until one is found for which the beginning height of
the luminous flight is consistent with expectation. This
is then the solution from single-station data only.

One can do the same test with effectively only the Joutsa
data by letting only these observations have non-zero
weights. But now all rows in column P data are depen-
dent on cell O57 and, it would be incorrect to let this
value change freely. The most correct way to deal with
this would be to put this dependency in the first row of
Joutsa data. In order to avoid this modification, how-
ever, one can simply leave the cell O12 (which is copied
to O57) fixed, or, even simpler, enter this existing fixed
numeric value into the cell O57. In that case, remember
to reinsert the reference =O12 into cell O57 later.

Similarly behaving results are expected from the Joutsa
data. The Mikkeli data are more suitable to this single-
station example, because the Mikkeli station was closer
to the meteor, and also because it had a camera with
a longer focal length. On the other hand, the fireball’s
video-images were more widely spread in the Mikkeli
camera, except at the very beginning and end portions
of the track.

When using single-station data only, it is still possi-
ble to test the quality of the solutions, without prior
knowledge of the correct one. It should help if one
sets the deceleration to zero in O40. After this has
been iterated into a reasonable solution, let cell O41

be fixed (a modest value of around 4 to 8) and then
allow O40 to be derived. Finally, one can test keep-
ing O41 as an unknown. The insights obtained based
on an ablation model (when available), could then lead
to a more precise result (shown in cell O41) achieved
with trial and error by comparing and altering. This is
beneficial when the quality of the observations is not es-
pecially good with a sufficiently long, internally-timed
observation track. One can say that the entry direc-
tion and deceleration both affect the apparent angular
velocity; however, these effects should be derived sepa-
rately. The deceleration is very small at the beginning,
and the general geometry (directions, distances, and ve-
locity) mostly influences the angular velocity behavior,
while the deceleration is mostly effective near the end.
This makes the task solvable, since the problem is par-
tially separable. This requires observations to cover as
much as possible of the luminous flight.

It may be of some help to have the (approximate) ana-
lytical formulae for velocity in single-station solutions.
This may be a way to incorporate as good a deceler-
ation model as possible, and such a model has been
implemented in the example sheet referred to in the
following section.

Note that, for high entry velocity meteors which com-
pletely ablate in the atmosphere, deceleration has less
of an effect on the described solution, and these single-

station cases are easier if only a sufficiently long track
(e.g., from a grazer) is available.

7 The advanced deceleration model

A sample sheet with the case of fireball 20120509 cor-
responds to an expected small meteorite dropper, and
it incorporates the approximate formula from the ana-
lytical solution of the entry differential equations. For
more details, see the paper by Gritsevich (2009). For
easy reference, the formula used is also visible in the
sheet as a screen capture image from that paper.

In this equation, the term 0.83β(1−v) is of lesser impor-
tance, and if the numeric value of this term was known,
the value of v could be analytically solved for (here, the
dimensionless velocity v is defined as the ratio of the
actual meteor velocity V to its pre-entry velocity value
Ve). In this selected example case, an acceptable solu-
tion could be reached in only one step by getting the
approximate value of v from the previous iteration. Al-
ternatively, one could manually set v = 1 (i.e., actual
velocity equals pre-entry velocity) for the beginning seg-
ment of the luminous trajectory, and choose a smaller
value of v for the later flight-stage (as a first approx-
imation to start the iterative method). In the Excel

spreadsheet, the value “1” has been manually input into
cell BI7 and the value “0.55” into cell BI51 for this pur-
pose. The program integrates the position of the mete-
oroid over time incorporating the dimensionless velocity
value v from the formula mentioned above. Also, the in-
tegration involves the “altered time” in column P. The
numerical integrations in this example are introduced
to use the time step according to the camera’s frame
rate. Note that, here, the cameras have different frame
rates of 25 and 30 with corresponding steps of 0.04 s
and 0.033333 s.

The integration method uses the simplest approach,
with the velocity for a given step calculated from the
previous observation height, etc. More elaborate meth-
ods could be introduced, but might make the spread-
sheet more “burdensome” for computation. The Solver
may in some cases need more than a thousand itera-
tions. Considering that the observations contain mea-
surement errors, and that the formula is an approxi-
mation, the selected integration method is expected to
be sufficient. Also, some simple trials to improve the
method may easily lead to a circular reference prevent-
ing the calculations to run further.

If a different time step is used for different observing site
data, then these integrations may not give exactly the
same results and negatively impact the final solution. It
is therefore desirable not to have a big time difference
in steps during observations. In general, it is better to
keep the step small, even though there were no observa-
tional data for each step (corresponding to a row of its
own in the spreadsheet), as with the Mikkeli site data.
We assume that using both 0.04 and 0.0333 seconds in
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the same spreadsheet is acceptable. Bigger time-step
differences have been tried for other examples, with no
noticeable harm to the solution.

From this method, one obtains values for the dynamic
equations parameters α and β. The estimations of en-
try mass and end mass calculated from these can be
seen in cells G19 and J19. The entry mass estimation is
calculated by means of the α value and the entry radi-
ant altitude (“slope”) value with some other parameters
affecting the final result, such as the meteorite density
(given in cell F19) and parameters in cells E19 and I19

of the spreadsheet. These input parameters luckily only
change over a relatively small range. The parameter α
(the ballistic coefficient) characterizes the aero-braking
efficiency and serves as initial dimensionless meteoroid
mass definition. The parameter is proportional to the
ratio of the mass of the atmospheric column along the
trajectory to the meteoroid initial mass. The mass loss
parameter β serves as an initial dimensionless meteoroid
energy. This parameter is proportional to the ratio of
the initial kinetic energy to the energy which is required
to completely destroy the meteoroid body during its at-
mospheric entry. Revealing these parameters based on
observations is outside the scope of these instructions,
though. More details on this matter are given by Grit-
sevich (2009).

There are different formulae applied to save for further
use in the cells P36, P37, and P38. The formula in cell
P38 needs to be copied for this model’s use into each row
with this type of integration, except the first one, for
every case. In the first row of every integration section,
one should copy the formula in P36, which is the one
used in our “old” deceleration model. Alternatively,
one can input a direct copy using the same row from
column O. If the old deceleration parameter (cell O30) is
fixed to zero, the old type formula makes a direct copy
of the cell in column O to column P for the row under
consideration, as suggested above.

If one has solved the problem with the old type deceler-
ation parameters, these can be used in the new model,
in the first row of each internally timed sequence (copy
formula form cell P37) to get a value in column O (in
the first row under consideration) linked to the column
P value at the same row. As to the correctness of the ac-
tual solution, there could be a direct copy formula from
O to P, but if having used the old deceleration formula
(with valid parameters), then this ascertains that the
values in column O for different stations will be in the
same actual time scale. If one does not have these old
parameters, but wants to have this kind of time syn-
chronization, then it is advised first to solve the case
according to the old model.

If there are no active dependencies of the old type model
remaining, except those linking the start of each seg-
ment and/or some individual observations, as is the case
here in cells O46 to P46, then the end result of the track
and its associated parameters, such as α and β, are not
affected.

If the old-type formulas and parameters remain more
or less in use, another problem may arise. Applying
the power deceleration formula to time values that are
too big could reverse the direction of motion. It may
happen that the solver finds such a time value and fur-
ther tries to converge around this. This may lead to
unrealistic solutions. Such a situation may also be en-
countered when the old deceleration model alone is in
use. In such cases, the convergence typically gets much
slower and in certain situations may not find a good
minimum (convergence may be slow for other reasons
as well). If this is suspected, check the (unknown) tim-
ing values at column O. Edit that value which is found
to be considerably bigger than a reasonable estimate for
the flight profile in question. Then try to solve again.

The advantage of using the based-on-old-type model pa-
rameters, as in this example, is that the timing data in
column O for each observation and station (within some
uncertainties) is in the very same “time system”, and
hence they are directly comparable to each other.

It should be noted that, in many cases with poorer
quality data, the parameter β may not be very well
estimated. This is the case in this worked example.
You can notice this by trying to find solutions with the
weights of Mikkeli and Pukinmäki changed relative to
each other. In this case, the difficulty is expected to
arise because the Pukinmäki site was quite distant from
the meteor and did not even observe the meteor to as
low an altitude as it was observed in Mikkeli. With
Pukinmäki, automatic image-pixel-coordinates for each
frame are in use. In the Mikkeli observations, the mea-
surements were made from a (peak-hold) sum image
that was made to capture only every fifth frame, in or-
der to be able to get internally timed manual measure-
ments. This meteor came towards Mikkeli with slow
angular velocity and so these frames (of the very bright
meteor) cannot be individually measured for most of the
flight. The internally timed measurements were taken
only close to the end.

Surely, a more definitive case could have been used as
the example, but we found it beneficial to demonstrate
what kind of difficulties could arise in actual calcula-
tions.

At this point, one could also take the resulting tabu-
lated velocity and height values from the derived solu-
tion with the advanced model (as well as only from our
base model) to be used in the algorithm by Gritsevich
(2009), that includes the more accurate solutions based
on the dynamic differential equations.

Note. The implemented deceleration model involves
the scale height parameter in order to analytically de-
scribe the isothermal atmospheric profile with the den-
sity decreasing exponentially with the height. Espe-
cially in high northern latitudes like Finland during the
winter, the polar vortex makes the stratospheric con-
stant pressure surfaces to occur at considerably lower
heights than they would normally appear at in the ex-
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ponential atmosphere. The model can in principle be
corrected for this, at least if actual stratospheric data
are available. This has already been tested with the
fb entry program, but we plan to study this in more
detail, present results, and release an fb entry program
which account for such corrections later.

8 How to use only the internally-timed
azimuth values from the camera data

The reader should refer to the Excel spreadsheet for
this example, fb entry 20120727 examples.xls.

It is typically found for all-sky video cameras that the
low elevation angles are not as well calibrated as the az-
imuth angles. In such cases, it is possible to rely strictly
on the azimuth angles. One requires another comple-
mentary camera to provide a more complete set of di-
rectional data. Also, the azimuth values of the all-sky
camera under consideration need to be internally time-
stamped. For the track derivation, it is also important
that the data from the complementary camera be inter-
nally timed. Otherwise, the case can be analyzed only
for the retrieval of the meteor velocity.

This has been applied to several fireball cases, in Fin-
land, Russia, and the USA. However, these spreadsheets
are too complicated (also for the referred Finnish “Lam-
mi case”). The presented case, therefore, is a slight
modification of the 2012 July 27 case for the Siuntio sta-
tion, using its (only) two internally timed data-points.
The spreadsheet that has already been in use with these
instructions has also another modified version, which
is fb entry 20120727 examples.xls. We have in this
same spreadsheet another special example that we will
refer to later.

The Siuntio observations at rows 70 and 71 with the
time spacing of 1.96 s (as seen in cell O71) have been
consequently altered for this purpose. Regarding the
formulas, only the AV column cells (AV70 and AV71) have
been altered.

Instead of the total error, there is the difference between
the observed (directions transformed according to the
frame) azimuth from column BF and the modeled value.
Because the usual data errors are (practically speaking)
in radians, this total error is also roughly converted to
radians. This allows the weighting values to be compa-
rable to the more normal data azimuth-elevation values.

The column AX displays the total error which is due
to the difference of the azimuth values at columns BF

and AZ. One can see that, after fitting, the real error
in these observations is about 4◦ and the azimuth error
discrepancy below 0 .◦2.

Since this camera was calibrated a long time ago, the
azimuth values are actually not very reliable. Therefore,
this has been presented here as an example only, illus-
trating how to work with data like these. The apparent

azimuth errors are not necessarily the real errors in the
azimuth. They are only based on the best fit. Indeed,
the key practical idea is not to get a good triangulation
of where the fireball track is, but to have the angular
velocity well-fit to the other observations, as such may
tell, for example, on the actual entry direction in az-
imuth and/or on the situation in between two stations
with observations from opposite sides of the track.

One can obtain the best results using a full sequence of
internally timed video frames. Also, it is desirable to
have the azimuth values quite well calibrated, hopefully
better than in this example.

It may happen that the azimuth value is near 180 de-
grees. The allowed values for difference subtraction here
are between −180◦ and +180◦. One value can be close
to −180◦ and the other one approaching +180◦. Then
the difference that arises may be close to 0◦ or may be
around 360◦, preventing the convergence to the correct
solution. If this happens, one may for example treat
the difference by using the principle value of the func-
tion DEGREES(ASIN(SIN(RADIANS("difference")))).
This is converted to radians by dividing by 180/π ≈

57.3, but this last step can be omitted if the first opera-
tion in the formula referred above (DEGREES) is omitted
as well.

9 An additional property to deal with
apparent fall-angle observations

The reader should refer to the Excel spreadsheet for
this example, which is fb entry 20120727 examples,
row (approximately) 107.

This property is mainly useful if the spreadsheet is used
to analyze visual observations only or observations avail-
able from only a single camera supported by several
visual observations. This of course can be used with
camera observations, but the method uses some ap-
proximations, and in some cases may not provide all
the information that another method described later,
may give.

In this approach, the azimuth direction of the observa-
tion need not be known. Some value for the elevation
angle will be needed, however. If the observed angle
is steep, and the meteor is observed not far above the
horizon, the exact elevation is not so important (at the
accuracy level of visual observations). It will not pro-
duce much difference if one has used the value of 10◦ for
the elevation while it was actually only 5◦, for example.

If the flight is more horizontal, then the elevation an-
gle is much more important. Quite typically this is
only very approximately known from visual observa-
tions, but it can be helpful. If so, then another method
is recommended. This other method is especially rec-
ommended if it looks highly probable that the observa-
tion is near the radiant. In that case the elevation angle
will not be needed, but will (hopefully) be derived from
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other observations. This “additional property” method
calculates what these fall angles would be relative to the
horizon from the observation and correspondingly from
the track fit, and makes a comparison. This method
also has a weakness if, for example, one makes an ob-
servation at an elevation of 45◦ with this angle as 80◦.
Alternatively, an observation also at an elevation of 45◦

with this angle as 100◦ will be converted to the same
value relative to the horizon.

These situations may be a little bit difficult to visual-
ize, but this method is expected to be best suited with
steeply sloped angle observations. If practically all ob-
served angles are steep, then the entry itself is likely to
be relatively steep too.

This approach is quite simple to use. As for other obser-
vations, the observing site coordinates are placed into
columns B, C, and D. The observed fall angle is entered
at K, and the corresponding altitude of this observation
at column L.

The weight value to each observation is given in the
cells at column AU. After all (or sufficiently many) ob-
servations, directions, and fall angles are included, one
tries to find a solution in the usual way. After the fit,
the error in every fall-angle observation (as calculated
at the horizon) is shown at column AI, and also copied
to column AX.

The measure of the error is practically the same as in
the azimuth-elevation direction observations, therefore
similar weighting values can be used if they correspond
to similar accuracy observations.

10 Apparent fall-angle near the radiant

The reader should refer to the Excel spreadsheet for
this example, which is fb entry 20120727 examples B,
rows 112–113.

This method is of use mainly with expected meteorite
droppers when only visual observations are available.
If there exists a fall-angle observation near where the
direct track would have intercepted the Earth’s surface,
this can be of significant importance in the derivation
of where the intercept point happened and consequently
yield the whole trajectory.

This method also assumes that there are other observa-
tions that at least approximately can define the radiant
direction. If so, then this special observation need not
require anything else other than the apparent fall angle
relative to the horizon or vertical.

This observation is constructed by means of two di-
rectional measurements. The first has the azimuth-
elevation direction totally unknown, and the second is
adjusted relative to the first so that their mutual situa-
tion is according to the observed fall angle (given here
in cell J111). Elaborate spherical trigonometry formu-
lae for this are probably not needed, because this is

expected to be applied to visual observations for the
most part.

In general, it helps before starting with this method
that a rough solution already exists. Given a rough
estimate, the first observation timing (cell P111) can
be small enough (strongly negative value) referring to
the highest point (which is allowed to be much higher
than the real luminous heights) and close to the actual
radiant direction, as seen from the observer site. For the
second observation, the timing is kept as unknown. In
practice, it does not affect the solution if the resulting
height (that corresponds to these observations) from the
ground level is far from the real height of the meteoroid.
The angle can still be considered the same. If, however,
the observation has a reliable value for the observed
track length, then one may try to adjust the timing data
by trial and error, so that the heights (above the ground
in kilometers) are close to what one may assume. If the
modeled track length is not what has been observed,
then a determination can be made based on whether
the track’s Earth’s surface crossing is closer to or more
distant from the observer than the modeled result.

11 Apparent fall angle, more general
case

The reader should refer to the Excel spreadsheet for
this example, which is fb entry 20120727 examples B,
rows 125–126.

In principle, this is formulated in a similar way to the
previous section. In this case however, the altitude is
fixed and the azimuth is unknown (K125 with reference
to O20 in this case). The timings of both observation
lines are unknowns (P125 and P126 with references to
O21 and O22).

Especially with a horizontally moving meteor, it may
occur that the azimuth angle is quite well known, but
not the elevation angle. Then the selection of which
of these parameters is to be taken as unknown can be
altered. If both are reliably known, then it may be bet-
ter to have the observations as (two different) normal
azimuth-elevation observations. If there are enough re-
liable fall-angle observations available (“surrounding”
the low height entry path), it is possible that they will
define the whole track approximately, even without any
known azimuth directions. In this spreadsheet, the arti-
ficial fall-angle observations were generated mostly close
to the trajectory’s end point. One may test a case of
eliminating all the dual measurement azimuth-elevation
data by setting these rows with zero weight at column
AU from rows 57 to 92, and then trying to solve. In this
case, we suggest to leave the velocity (cell O6) outside
of the unknowns range, because it cannot be derived. It
does converge to some (maybe questionable) value, even
if not left out. Now the track appears to be shifted from
the actual one by some tens of kilometers. The direction
of entry, however, is acceptable.
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Here, the fall-angle values were rounded to a reasonable
visual accuracy level (actually these may still be more
accurate than typically with visual observations).

If there are originally no azimuth directions, then it
might be difficult to “find” the roughly correct track
from which a solution would later converge to. We
have not faced such a situation in practice, but we have
calculated a case where we could test the use of only
fall-angle values, which led to a nearly correct track.

12 Modeling the Earth’s gravitation
during the flight

The reader should refer to the Excel spreadsheet for
this example, which is fb entry 20120727 examples C.

Most fireballs do not need to be corrected for the effects
of gravity. Only very low velocity and low radiant-angle
fireballs may require correction for gravitation. So, if
there is no discernible need, it may be preferable to
assume the gravitational effect to be insignificant. In
Finland, there have been a few cases in which this has
been applicable. In particular, for the 2012 October 21
British fireball it was found necessary to have the entire
flight covered by a single fit.

If one is not sure about including the effects of gravity,
a decision can be made based on testing if the inclusion
of this effect decreases the residuals of the observations
or not.

There are at least three reasons mentioned below, as to
why one should try to avoid this. It has been typical
in Finland to start a new fireball case from an earlier
fb entry spreadsheet and modify it accordingly. Espe-
cially if there had already been observations taken from
the same stations, then the coordinates can be used
again.

First of all, when one takes the Earth’s gravitational
effect into account, one should keep that in mind if al-
tering the model further to study a future (no gravity)
case. Otherwise, more harm could come from using this
option than any advantage provided.

The second concern is that in order to have this effect
well incorporated, it would actually require a numeric
integration or some other elaborate program. In the
current spreadsheet, the effect is just added at the co-
ordinate level. The atmospheric deceleration is calcu-
lated along the track and the deceleration should also
“damp” the accumulated gravity effect. The additional
downwards velocity only increases with time. Due to
this the correction for the gravitation effect, one could
easily overcorrect with a decelerating meteoroid.

In practice, the effect is typically included only in the
upper part of the trajectory.

In a meteor grazer geometry, like the mentioned British
grazer, the gravitational effect can probably be applied

to the whole track, because it is acting orthogonal to
the atmospheric deceleration.

The third reason to avoid including this effect is the
following. The radiant altitude in cell O11 is for the
straight track, even if the effect is included. This is the
same (for the straight and curved legs) at the tangent
point, but if the origin is not also in this location, or
very close to it, it becomes more or less indefinite as to
where the cell value O11 actually refers to, if one wants
to be accurate.

In the example sheet, this effect is revealed in the col-
umn AG cells which are colored in gray. There is the
addition of -0.0049*(O63-O$63)^2 (the number in O63

varies according to the row). This addition is valid in
this sheet for a height of 46.7 km or above in the differ-
ent station observations. Geometrically, this curves the
track relative to the mentioned height, but the track
continues as a straight line below this level. At this
“point” the straight track is tangent to the curved track.

While adjusting the O63 cell, one should look at the
heights at column AH to make sure that the gravitation
formulae are applied at the same height range for every
station.

In this example sheet, the gravitational effect is not
at all needed, but was included to show how it works.
The origin was also changed (compared to the other
examples within this case) close to the tangent point,
because of the “third reason” explained above.

13 Estimating the accuracy of the
result

This is not easy to do with any method. The spread-
sheet program does not compute any statistical error
estimates. This may be considered a weakness, but
there are reasons why such error values may be highly
misleading. Before going to the actual means used for
estimating the errors, let us discuss the problems asso-
ciated with error estimation in more detail.

Video observations provide, in principle, looking direc-
tions to the meteor for each frame. The UFOAna-

lyzer pogram can provide that for each half-frame by
taking advantage of the interleaved nature of most com-
mercial video systems. Thus from a 25 fps PAL video
we have 50 directions for each second of visible meteor
track, and we have had cases with more than 200 direc-
tions from one station. This results in a set of problems
that we had to face in the spreadsheet program. As-
sume, for example, that we have 200 observations (and
possibly more) from one station and from a second sta-
tion only a fixed image from which we measure a few
track points. If we assume that both the direction mea-
surements of each frame from the first station and the
few individually measured track points from the second
station are of equal accuracy, and consequently apply
the same weight for each, this will most likely lead to
a highly erroneous solution. The internally timed ob-
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servations can more or less define the true entry direc-
tion, and if there are a lot of them, the single-station
data solution will be dominant. The individual sys-
tematic errors resulting from image calibration and/or
enlarged meteor images in those 200 data points can be
considerably larger than what statistics would tell us
should be required for final accuracy (due to the law of
large numbers). The result may thus be that the fitted
track considerably deviates from the second station’s
non-timed track, even though the measurements of this
second site’s measurements are in reality good.

In such a situation, the few non-timed track positions
must be weighted much more heavily than each of the
video-frame sequence data points. The weight values
themselves are subjective estimates, which are not di-
rectly obtained by examining possible individual errors.

Although we have emphasized the usefulness of fitting
to internally timed observations, this method has its
own disadvantages if not applied with sufficient care.

Essentially systematic errors complicate the error anal-
ysis. If we would use a locally linearized least squares
fit with statistical error values, the error values cannot
be trusted, because the systematic portion of the ob-
servation errors are not mutually independent. Indeed,
if one applies random errors to each point of the data
and generates a number of solutions, this can lead to
incorrect error analysis. In the baseline solution, there
will be observations with systematic errors and these er-
rors will not get removed by adding additional random
errors. The solution will remain biased. Of course,
if sufficiently large random errors are added, the er-
ror estimates will be large enough to cover the correct
solution as well, but the required random errors may
significantly exceed the true errors of each observation.
In asteroid and comet orbit analysis, such a random er-
ror generation has been used successfully, because their
observations are probably more mutually independent.

One practical means of estimating the errors is by gener-
ating pairwise or coupled solutions when there are more
than two stations of data, and compare them.

Other methods involve approximate calculations of how
much the assumed errors (in angle space) are effective
at the distance of the fireball, and then also take into
account the angle between the observation planes (not
available directly from our Excel sheet). This may
lead to some idea on the accuracy of the luminous entry
path derivation. The errors in determining a meteorite’s
final entry location goes beyond the scope of this paper.
Typically, these are much larger than the errors in the
position of the luminous flight track.

One may also couple the observations by using only a
fraction or subset of the available data and then try to
solve. Unfortunately, this does not help much to avoid
the systematic errors.

It is useful to doublecheck each station’s observations,
to see if they deviate from a straight line (great circle

on the sky) by looking at their residuals with respect
to the fit trajectory. If one of the stations has a long
internally timed track, then it may be worthwhile to
try a single-station solution. This may provide some
information on the systematic errors along the track,
which do not show up in the straight line check.

If one is interested in trying to determine a parent body
by comparing the derived meteoroid’s solar system orbit
with comet or asteroid orbits, then the semi-major axis
accuracy value is of major importance. Typically, this is
strongly dependent on the accuracy of the entry velocity
value. To check the accuracy of this parameter, we have
kept the entry track fixed at the final common solution
and tried to get the velocity derived individually from
each station’s data, where applicable.

14 Miscellaneous items

14.1 What to do, if the solver does not
converge

After one has already obtained a good solution and then
proceeds to make a minor change to the sheet, it may
occur that the program does not converge anymore but
stops immediately, even though the differences between
the solution and the measurements are not fully min-
imized. To help solve this problem, one should try to
make more significant changes to some quantity. It is
also recommended to slightly change the velocity value
in cell O6, by 1% for example. It typically helps the
convergence. If there is a relatively large value in the
deceleration cell O41 (more than 9, for example), this
may be one cause for the problem. Decreasing it to a
value below 9 typically helps, and, after convergence,
cell O41 will have its final value resulting from the fit,
even though it can be more than 9.

Selecting the Use automatic scaling setting to be on in
the Solver Options may sometimes help, but at other
times (especially if some timing happens to be nearly
zero), this may even prevent any further convergence.
In most cases there is not much harm with this “not
able to converge properly”. In the Solver Options , it
is worth to keep very small values in Precision, Toler-
ance, and Convergence. In the Derivates, there are two
options: Forward and Central. Sometimes the Forward
option seems to work more efficiently and more eas-
ily leads to convergence. In some instances, however,
better convergence can be achieved with the Central
option.

14.2 How to check for accurate ground
track location

The reader should refer to Excel spreadsheet for this
example, fb entry 20120727 examples D, row 112.

This is of real importance for at least low entry angle
meteorite droppers.
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The geographic coordinates in P7:P8 and H6:H7, as well
as for the track points in columns BB and BC, are only
calculated approximately by scaling the latitude and
longitude coordinate intervals. Even the curvature of
the equal-value latitude track is not taken into account
in this approximation. With steep entry (and origin
near the fall site) these typically are sufficiently accu-
rate, but, otherwise, especially with a big east-west span
of viewing coverage, this may not be accurate enough.

Here, we describe how to check one point at a time, to
see how close it is and if it is possible to correct the
values.

One could test if the continuation of the track passes
directly overhead. For this, a row with a normal obser-
vation type is added. Here, we have an elevation angle
of 90◦, and thus the azimuth direction can take on any
value. The timing is an unknown, now preferably in col-
umn P, not resulting in any harm from the deceleration
model that might have “stopped” the meteoroid before
this point. One of the coordinates is a given value and
the other is solved as an unknown to have a reference
point exactly on the calculated ground track.

This method can also be applied in a slightly modified
way to calculate a previously fixed point, such as the lu-
minous flight end point ground coordinates. To do this,
one has to copy and paste an existing observation row
which has just this lowest point into free open rows in
the spreadsheet. Next, one must copy the numeric value
from the same row (by using the ’Paste special/Values
option) into the new rows’s column P. Keep the weight
for this row small, but above zero. Copy the rough co-
ordinates from columns BB and BC to columns C and D

of the new row and insert the elevation angle of 90◦ at
column L. Then solve with the Solver for cells C and D

of this row. One should then obtain the accurate geo-
graphical coordinates of the ground point instead of the
approximate ones in columns BB and BC.

14.3 How to deal with calculated dark
flight length (by another program)

As mentioned before, one can use a value of how much
before the Earth surface crossing that the fall happened,
and place it into cell J6 having the modeled fall loca-
tion (without wind effects) in H6:H7. This is sufficient
for steep atmospheric entries, but is not adequate for
low-angle entries. Even if one has this value from some
other program, the value may be large and very sensi-
tive to small differences between this program and the
other source. This is susceptible to error, if, for exam-
ple, the steepness values are actually not in the same
spot. Moreover, one has to note that the origin needs to
be selected so that the values in O7 and O8 are small, be-
cause these values refer to the point where the straight
track is crossing the z = 0 plane in the Cartesian x, y, z
coordinates. This plane is tangent to the Earth’s sur-
face at the origin, and not the sea level surface, and a
low-angle entry case may therefore produce errors.

It may be typical that the true end flight length is
shorter than the value for the fall site before the plane
crossing in the J6 cell. So, it may be preferable to use
the true dark flight length estimate obtained with a
complementary program instead.

With the accuracy typically required for this, it is ex-
pected to be sufficient if this has been calculated by
means of the coordinates in H6 and H7 and those found
at columns BB and BC for the observation that corre-
sponds to the end of the luminous flight (if one exists).

Spherical trigonometry can be used, but it is expected
that rougher calculation is as accurate as a dark flight
model. One can assume the latitude difference for 1◦

to be 111 km and the longitude difference for 1◦ to be
(111 km) × cosϕ, with ϕ the latitude, and then use
the Pythagorean Theorem to calculate the dark flight
(ground path) length in kilometers.

If the cells H6 and H7 values do not show the desired
length (the one obtained with a complementary pro-
gram), one should adjust the value of cell J6 by trial
and error to get improved results.

For an Earth grazer, the Earth’s surface crossing value
does not exist, of course. Interestingly, the dark flight
may nevertheless result in a value of finite length. Thus,
some other means to calculate the corresponding point
along the track will be needed. One can check some
accurate track points and do spherical trigonometry to
continue with trial and error searching for this case.

14.4 Other possible uses of the program

Assume that you see from your camera image a dis-
tant light near the horizon, such as, for example, a TV-
station mast or a tower. If one has accurate geographi-
cal coordinates of the station and the light of the mast,
one can use the program to calculate the azimuth di-
rection to this mast.

One must choose the origin coordinates to be exactly
those of the station, and include an observation row
with the coordinates of the mast in columns C and D

(B is not important in this case). Then, one must cal-
culate the direction by means of the mast’s x and y
coordinates, found in columns H and I, for example, in
the sheet with the formula DEGREES(ATAN2(In/Hn)),
where n is the row number under consideration. One
can also calculate the direct distance with the coordi-
nates, by means of the Theorem of Pythagoras. And
if distances along the surfaces are needed, an approxi-
mate correction to this is easy to calculate. For exam-
ple, the formula 2*6370*ASIN(d dist/(2*6370)) will
provide a good value up to distances of a few thousand
kilometers. In this case, d dist has been calculated
geometrically from the coordinates, as above.

The program has also been successfully used in the
calculation of the location and height of thunderstorm
TLE’s, such as sprites.
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14.5 Possible Excel errors

Since the beginning of the development of this program,
the following Excel error has been noticed, except in
the latest version of MS Office Excel 2003 SP3,
where another error has appeared. After some use of
the Solver with quite extensive models, the Solver stops
working. Nothing happens when trying to solve; the
Solver sheet does not even become visible. Alterna-
tively, the Solver does not show a visible result. In
most instances, ending the Excel session and starting
a new one helps. However, it may be that after a few
restarts of the Excel, even this may not help, and one
has to restart the computer to get it working again.

If the Solver stops working, one should save the exist-
ing sheet before exiting Excel. In this case, save the
program into a file with a new (duplicate) name.

We have learned how to effectively avoid this error.
When selecting the Solver and then selecting the input
cells for solving, one can make a shift to another origi-
nally non-visible position on the sheet, but one should
avoid such shifting at this stage. If one cannot select
the cells from what is visible, it is better to try to edit
these manually. Even having one such cell and a quick
Solve run with stop and Keep Solver solution should
assure the Solver to appear in the right visible corner
of the sheet during its next use, and one can then select
visually the needed unknowns.

The mentioned error in the 2003 version may be even
more critical.

After getting used to the Solver, and beginning to edit
some cell content, it is beneficial to remember the fol-
lowing. This mentioned 2003 version could crash with-
out allowing you to save your edited sheet. Therefore,
it is recommended to save frequently, especially in the
case of significant editing changes. It is better to edit
the program only after starting Excel and loading the
sheet, but before starting to run the Solver.

15 Conclusions

The key features of the flexible fireball entry track calcu-
lation program used for reduction analysis of the Finnish
Fireball Working Group meteors has been presented.

The authors hope that the reader finds these instruc-
tions to be helpful and constructive. The program has
been officially released for public use and made available
in particular through the internet.2 Program requests
and relevant comments can also be addressed directly
to the authors. Some real meteor examples have been
presented to get the interested reader started, with a fo-
cus on special issues such as gravity inclusion and error
propagation, which are not widely taken into account in
meteor studies elsewhere. We have also included within
the paper a description of some common issues such
as ensuring faster solutions and intermediate technical
problems the authors have already faced while perform-
ing data reductions of meteor observations.

Acknowledgements

The authors would like to warmly thank Paul Rogge-
mans and Marc Gyssens for the enormous efforts they
spent on getting the 2012 IMC Proceedings issue out in
a timely fashion and of the highest quality possible. The
authors would like to thank to Peter Gural who pro-
vided valuable comments and edited an earlier version
of the manuscript. The authors are also very grateful
to the other members of the Finnish Fireball Working
Group for their enthusiasm, thorough help with collect-
ing meteor observations, and other relevant tasks.

References

Ceplecha Z. (1987). “Geometric, dynamic, orbital and
photometric data on meteoroids from photographic
fireball networks”. Bulletin of the Astronomical In-
stitutes of Czechoslovakia, 38, 222–234.

Gritsevich M. I. (2009). “Determination of parame-
ters of meteor bodies based on fight observational
data”. Advance in Space Research, 44, 323–334.

Gural P. S. (2012). “A new method of meteor trajectory
determination applied to multiple unsynchronized
video cameras”. Meteoritics & Planetary Science,
47, 1405–1418.

Langbroek M. (2004). “A spreadsheet that calculates
meteor orbits”. WGN, Journal of the IMO, 32,
109–111.

2http://lyytinen.name/esko/fb entry vers 1.zip.


