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Pro
eedings of the IMC, La Palma, 2012 1De
eleration rate of a �reball as a tool to predi
t
onsequen
es of the impa
tMaria Gritsevi
h1,2,3, Daria Kuznetsova2, Vladimir Stulov2, and Leonid Tur
hak3

1Finnish Geodeti
 Institute, Geodeetinrinne 2, P. O. Box 15, FIN-02431 Masala, Finland
2 Institute of Me
hani
s and Fa
ulty of Me
hani
s and Mathemati
s,Lomonosov Mos
ow State University, Mi
hurinsky Pr. 1, Mos
ow, 119192, Russiagritsevi
h�list.ru, morven9�yandex.ru

3Dorodnitsyn Computing Center, Russian A
ademy of S
ien
e, Vavilova Ul. 40,Mos
ow, 119333, Russiatur
hak�

as.ruThe 
orre
t interpretation of �reball observations is a very important task, sin
e it 
ould promptly
on�rm a fresh meteorite fall, and, furthermore, provide a link to its parent body. Based on theanalysis of the �reball aerodynami
 equations, we des
ribe the possible results that might a

ompany
ollisions of 
osmi
 bodies with the Earth's atmosphere and surfa
e. After integrating, these equations
hara
terize the body's traje
tory in the atmosphere very well, while the exa
t derived dependen
yof the body's velo
ity on the height of the �reball 
an be further 
ompared to the observations. Thesolution depends on two key dimensionless parameters de�ning the meteoroid drag and mass loss ratein the atmosphere.1 Introdu
tionThe study attempts to 
lassify meteor events and pre-di
t their 
onsequen
es with respe
t to values of thebasi
 dimensionless parameters derived from the aero-dynami
 equations. Two key parameters have the fol-lowing physi
al meaning:1. the ballisti
 
oe�
ient α 
hara
terizes the aero-braking e�
ien
y. It is proportional to the ra-tio between the mass of the atmospheri
 
olumnalong the traje
tory with 
ross se
tion Se to themeteoroid initial mass;2. the mass loss parameter β is proportional to theratio of the fra
tion of the kineti
 energy of thebody's unit mass arriving at the body in the formof heat to the e�e
tive destru
tion enthalpy.For ea
h given �reball 
ase, these parameters 
an befound by 
omparing the theoreti
al 
urve of equation (8)with the a
tual rate of body de
eleration in the atmo-sphere as des
ribed in the following se
tion.2 Aerodynami
 modelThe physi
al problem of the meteor body de
elerationin the atmosphere has been 
onsidered in a number ofpapers and monographs (see, e.g., Stulov et al, 1995).The 
lassi
al dynami
 third-order system has been 
on-stru
ted, where the body mass M(t), its height abovethe planetary surfa
e h(t), and its velo
ity V (t) are thephase variables. The equations of motion proje
tedonto the tangent and to the normal to the traje
tory

appear as
M

dV

dt
= −D + P sin γ; (1)

MV
dγ

dt
= P cos γ −

MV 2

R
cos γ − L; (2)

dh

dt
= −V sin γ, (3)with D = cDρaV
2S/2 the drag for
e, L = cLρaV

2S/2the lifting for
e, and P = Mg the body weight. Here,
M and V are the body's mass and velo
ity, respe
tively;
t is the time; h is the height above the planetary sur-fa
e; γ is the lo
al angle between the traje
tory and thehorizon; S is the area of the 
ross se
tion of the body;
ρa is the atmospheri
 density, g is the a

eleration dueto gravity; R is the planetary radius; and cD and cL arethe drag and lift 
oe�
ient, respe
tively.Equations (1)�(3) are 
omplemented by the equationfor the variable mass of the body:

H∗
dM

dt
= −

1

2
cHρaV

3S (4)where H∗ is the e�e
tive enthalpy of destru
tion and
cH is the 
oe�
ient of heat ex
hange. It is assumedthat the entire heat �ux from the ambient gas is spentto the evaporation of the surfa
e body material.Using equation (3), it is possible to introdu
e a new vari-able h and pass to 
onvenient dimensionless quantities
M = Mem, V = Veν, h = h0y, ρa = ρ0ρ, and S = Ses,where h0 is the height of the homogeneous atmosphere,
ρ0 is the atmospheri
 density near the planetary sur-fa
e, and the subs
ript �e� refers to the parameters atatmospheri
 entry. Sin
e the velo
ities in the problemunder 
onsideration are su�
iently high (in the range
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2 Pro
eedings of the IMC, La Palma, 2012from 11 to 72 km/s), the body's weight in equation (1) is
onventionally negle
ted (Gritsevi
h, 2010). Variationsin slope γ are not signi�
ant, and usually they are nottaken into a

ount. With allowan
e for the above 
on-siderations, the equations for 
al
ulating the traje
toryeventually a
quire the following, more simple form:
m

dv

dy
=

1

2
cD

ρ0h0Se

Me

ρνs

sinγ
; (5)

dm

dy
=

1

2
cH

ρ0h0Se

Me

V 2
e

H∗

ρν2s

sin γ
. (6)To �nd the analyti
al solution of equations (5)�(6), weassume that the atmosphere is isothermal: ρ = e−y.Following Levin (1956) we also assume that the 
rossse
tion and the mass of the body are 
onne
ted by therelationship s = mµ, where the 
onstant parameter µ
hara
terizes the possible role of rotation during the�ight. With these assumptions, the solution of equa-tions (5)�(6) with the initial 
onditions y = ∞, ν = 1,and m = 1 has the form

m = e−
β

1−µ
(1−v2); (7)

y = lnα + β − ln
∆

2
; (8)

α =
1

2
cD

ρ0h0Se

Me sin γ
; (9)

β = (1 − µ)
cHV 2

e

2cDH∗
, (10)where α is the ballisti
 
oe�
ient, β is the mass lossparameter, and ∆ is short for Ei(β) − Ei(βν2), with

Ei(x) the exponential integral1.In the remainder of this paper, we use the analyti
alsolution (8) as the general theoreti
 height-velo
ity re-lation.The values of the parameters α and β providing thebest �t of the observed physi
al pro
ess 
an be foundby the method proposed by Gritsevi
h (2009). The sumof the squared deviations of the a
tually observed alti-tudes hi and velo
ities Vi of motion at 
ertain points
i = 1, . . . , n of the desired 
urve des
ribed by equa-tion (8) from the 
orresponding values e−y 
al
ulatedusing equation (8) is used as the �tting 
riterion. Thenthe desired parameters are unambiguously determinedby the following formulae:

α =

n
P

i=1

e−β−yi∆i

2
n
P

i=1

e−2yi

; (11)
n
X

j=1

("

∆j

n
X

i=1

e
−2yi

−

 

n
X

i=1

∆ie
−yi

!

e
−yj

#

„

∆j −

d∆j

dβ

«

)

= 0; (12)
n
P

i=1

e−2yi
n
P

i=1

»

“

d∆i
dβ

−∆i

”

2

+
“

∆i−2αeβ−yi

”

–„

d
2
∆i

dβ2
−2

d∆i
dβ

+∆i

«

»

n
P

i=1

e−yi

“

∆i−
d∆i
dβ

”

–

2
> 1.(13)Here, νi = Vi/Ve, yi = hi/h0, and ∆i = Ei(β)−Ei(βν2

i ).1Ei(x) =
R x
−∞

u−1 exp(u)du.

The obtained parameters are used to 
al
ulate the massof a meteor body, the e�e
tive enthalpy of evaporation,and other important parameters. The 
omplete algo-rithm of deriving luminous e�
ien
y and shape 
hange
oe�
ients is des
ribed in details by Gritsevi
h andKos
hny (2011). The initial mass Me and mass in anyother point along the traje
tory 
an be estimated us-ing the found values of the ballisti
 
oe�
ient α andmass loss parameter β in the following way (see, e.g.,Gritsevi
h, 2008a; 2008b):
Me =

„

cDAe

2

ρ0h0

α sin γ

«3

ρ
−2

b
(14)

h

h0

= ln(2α) + β − ln

»

Ei(β) − Ei

„

β + (1 − µ) ln
M

Me

«–

,(15)where ρb is the bulk density of the meteoroid body, and
Ae its pre-entry shape fa
tor2.3 Basi
 
on
lusions and resultsBelow, we propose several examples of 
ollisions of 
os-mi
 bodies with the Earth and their 
onsequen
es. Fig-ures 1 and 2 further illustrate them. These examplesare supplemented by a brief analysis of the a
tual events(Gritsevi
h et al., 2012).

Figure 1 � Distribution of parameters α and β for the �re-balls registered by the Meteorite Observation and Re
overyProje
t in Canada (Halliday et al., 1996). The �lled trian-gle 
orresponds to the unique meteorite found on the groundin the 
ontext of the proje
t (Innisfree). The 
urve showsour analyti
ally derived margin between the region with ex-pe
ted meteorites on the ground and fully ablated �reballs.1. The range α ≪ 1, β ≪ 1: The impa
t of auni�ed massive body with the Earth's surfa
e re-sults in the formation of a vast 
rater. The largebody's mass minimizes or entirely ex
ludes thee�e
t of the atmosphere. Almost 
ertainly, theatmosphere is penetrated by a 
osmi
 body with-out its fra
ture. An illustrative example is theBarringer Crater in the state of Arizona, UnitedStates.2Ae = Seρ
2/3

b
/M

2/3

e .
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Figure 2 � The leftmost 
urve shows the margin for theregion with 
rater formation; the rightmost 
urve the marginfor meteorite survivors.2. The range α < 1, β < 1: fra
ture of the me-teor body in the atmosphere and deposition ofa fragments 
loud onto the Earth's surfa
e takepla
e with the formation of a 
rater strew �eldwith 
orresponding meteorite fragments. Modernmathemati
al models des
ribing the motion of thefragments 
loud in the atmosphere allow us to pre-di
t basi
 geographi
 and other features of these�elds. The ablation e�e
t on the motion of thefragments is of minor importan
e. An illustra-tive example is the Sikhote-Alin meteorite shower(Primorsky Krai, Russia, 1947).3. The range α ≈ 1, β ≈ 1. These 
onditions are
lose to those of the pre
eding se
tion. However,they are 
hara
terized by a more signi�
ant roleof ablation. As obvious examples, we 
an indi-
ate reliably do
umented �reballs for whi
h partof the luminous segment of the atmospheri
 tra-je
tory were observed, meteorite fragments beingalso found in a number of 
ases. Among them,there are the famous bolides Neus
hwanstein (Ba-varia, Germany, 2002), Innisfree (Alberta, Cana-da, 1977) and Lost City (Oklahoma, USA, 1970).They are relatively small meteoroids, thus the to-tal mass of meteorites 
olle
ted on the Earth'ssurfa
e is in the order of 10 kg (see, e.g., Gritse-vi
h, 2008a). The absen
e of 
raters is explainedby the same reason. The 
hara
teristi
 feature ofthe 
olle
ted meteorite fragments is the presen
eof ablation tra
es on their outside surfa
e 
overedby fusion 
rust.4. The range α < 1, β ≫ 1: fra
ture and 
ompleteevaporation of a meteoroid in the atmosphere takepla
e at the low velo
ity loss. The 
hara
teristi

onsequen
e of these events is the fall of a high-

speed air-vapor jet onto the Earth's surfa
e. De-s
ending in the atmosphere, the gas volume ex-pands (Tur
hak, 1980). Then, the gas 
loud ar-rives at the Earth's surfa
e, whi
h is a

ompaniedby the formation of a high-pressure region, and�ows around its relief. As a result, the 
hara
ter-isti
 size of the impa
t region ex
eeds the 
har-a
teristi
 size of the original meteoroid by severalorders of magnitude. The Tunguska Event (Kras-noyarski Krai, Russia, 1908) serves as a real ex-ample of an event of this type.Referen
esGritsevi
h M. I. (2008a). �The P°íbram, Lost City, Inn-isfree, and Neus
hwanstein falls: an analysis of theatmospheri
 traje
tories�. Solar System Resear
h,42, 372�390.Gritsevi
h M. I. (2008b). �Estimating the terminal massof large meteoroids�. Doklady Physi
s, 53, 588�594.Gritsevi
h M. I. (2009). �Determination of parame-ters of meteor bodies based on �ight observationaldata�. Advan
es in Spa
e Resear
h, 44, 323�334.Gritsevi
h M. I. (2010). �On a formulation of meteorphysi
s problems�. Mos
ow University Me
hani
sBulletin, 65, 94�95.Gritsevi
h M. and Kos
hny D. (2011). �Constrainingthe luminous e�
ien
y of meteors�. I
arus, 212,877�884.Gritsevi
h M. I., Stulov V. P., and Tur
hak L. I. (2012).�Consequen
es for 
ollisions of natural 
osmi
 bod-ies with the Earth's atmosphere and surfa
e�. Cos-mi
 Resear
h, 50, 56�64.Halliday I., Gri�n A. A., and Bla
kwell A. T. (1996).�Detailed data for 259 �reballs from the Canadian
amera network and inferen
es 
on
erning the in-�ux of large meteoroids�. Meteoriti
s & PlanetaryS
ien
e, 31, 185�217.Levin B. Yu. (1956). Physi
al Theory of Meteors andMeteoroid Substan
e in the Solar System. A
ademyof S
ien
es of the USSR, Mos
ow. In Russian.Stulov V. P., Mirskii V. N., and Vislyi A. I. (1995).Fireball Aerodynami
s. Nauka. In Russian.Tur
hak L. I. (1980). �Braking of bodies upon entry intoan atmosphere�. Cosmi
 Resear
h, 17, 778�782.


