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We consider the following scenario for the destruction of a rather large meteoroid body. During
its movement through the atmosphere, the meteoroid suffers from aerodynamic forces, and gets
repeatedly crushed. We assume that in this first stage of fragmentation, the meteoroid is divided
into several rather big pieces. The resulting cloud of fragments of unknown shape, size, and quantity
continues its path into the lower atmosphere. The second stage of fragmentation consists of the sudden
destruction of a body into a cloud of small particles and dust. Due to extremely high temperatures
at the surface of the fragments and in the gas around them, all of the meteoroids can melt in a short
period of time. This phenomenon appears to the observer as a terminal flash.

1 Introduction

Observations of entries of bolides into the Earth’s atmo-
sphere prove their fragmentation and destruction in the
atmosphere. Most meteoroids are destroyed by aero-
dynamic forces (Ceplecha et al., 1993; Ceplecha and
ReVelle, 2005; Popova and Nemtchinov, 2008). The
fragmentation could occur in two different ways. One
way is progressive fragmentation, which means that the
body breaks up into several particles. Alternatively, a
meteoroid could be destroyed into a cloud of small dust
particles. It is possible, however, that both fragmen-
tation mechanisms are at work for the same meteoroid
(Ceplecha et al., 1993). In this paper, we consider such
a two-stage destruction.

2 Governing equations

As usual, we assume that the movement of the mete-
oroid is described by a standard set of equations includ-
ing the equation for the movement of its center of mass
and the equation of mass loss, which can be written as
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with M the meteoroid’s mass, V' its velocity, A its cross-
sectional area, pg the density of the atmosphere around
the meteoroid, Cp the drag coefficient, Cy the heat
transfer coefficient, and @ the specific heat of ablation
(effective enthalpy). The optical luminosity is propor-
tional to the kinetic energy of the meteoroid mass and
is due to the intensity of the ablation. The luminosity
of the body (or particle) can be found as
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with 7 a dimensionless coefficient of luminosity (Ce-
plecha et al., 1993; Borovicka et al., 1998).

3 Fragmentation and destruction of
meteoroids in the atmosphere

We consider the motion of a rather big body, and as-
sume that the body breaks up into several rather big
pieces at the first stage of its fragmentation. Their
shapes and sizes depend on the heterogeneity of the
parent body. Further fragmentation of the cloud of par-
ticles occurs in a lower layer of atmosphere, where the
aerodynamic forces increase. We assume that in the
final stage the fragments break down into small pieces
and produce a light flash known as a “thermal explosion”
(Egorova and Lokhin, 2010; Egorova, 2012a; 2012b).
This means that the fragments are in a hot cloud and
may be subject to large thermal stresses, causing an ad-
ditional fragmentation into smaller pieces that instantly
evaporate, creating the explosion.

4 Duration and path length for each
particle of the fragmented body

Without loss of generality, we assume a spherical shape
for the fragments. Then, we can find the mass of the
particle knowing its radius r and density pp. Assuming
the resistance and heat transfer coefficients to be con-
stant, we may derive the following from the equations
(1) of momentum and mass loss:
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with Vy and r( the velocity and radius of the meteoroid
body upon entering the atmosphere.

We assume that the particles emit light until slowed
down to a some critical velocity V, which is no longer
sufficient to maintain the heat at the surface of the
body. Hence, we may derive the duration of the emis-
sion from (3):
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The path length of the meteor will then be
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5 The increase in light intensity at the
first stage of fragmentation

In the first stage, the size of the particle depends on
the parent body’s heterogeneity, which is random, as
was said before. We consider that the meteoroid frag-
ments are all spherical and have all the same size. This
assumption allows us to calculate the brightening as a
result of the increase of the surface area:
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with IV the number of fragments.

By the statistical theory of Weibull, the strength of the
fragmented particles will increase (Popova and Nemtchi-
nov, 2008). Knowing the strength of the fragmented
particles, one may derive the altitude of the second frag-
mentation, and hence also the path length and duration
before the next fragmentation.

We applied our theory for the SN94032 bolide (Popova
and Nemtchinov, 2008) and the Kogice meteorite fall
(Borovicka, 2012) and the results were in good agree-
ment, with the observational data.

6 Time and light intensity at the
second (final) stage of fragmentation

Rapid destruction and evaporation of small fragments
of the meteoroid causes the effect of a thermal explo-
sion. We considered the thermal explosion caused by
the rapid evaporation of the small fragments cloud with
a typical fragment size range (Egorova, 2012a; 2012b).
The luminosity of the final flare was calculated as an
integral over the mass distribution:

1 2
d Vdm

Here, we switched to dimensionless parameters by nor-
malizing the largest mass to 1. Solving (7) allows us to
find the intensity and the real duration of the final flare.
We found that the calculated values of these parameters
for the SN94032 bolide (Popova and Nemtchinov, 2008)
and the Kogice meteorite fall (Borovicka, 2012) are close
to the observed values, supporting our hypothesis of a
two-stage fragmentation.

7 Conclusions

Using analytical solutions and simple estimates from
the physical theory of meteors, we conclude that two-
stage fragmentation can occur for rather bright fireballs.
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