Prediction of meteor shower associated with comet 122P/de Vico

D. Tomko & L. Neslušan

Astronomical Institute , Slovak Academy of Sciences

Introduction

- We model a theoretical stream associated with comet 122P/de Vico and follow its dynamical evolution until the present.
- Haley-type comet orbital period = 74.35 years.
- Osculating elements : q = 0.659337, e = 0.962709, $\omega = 12.996092^{\circ}$, $\Omega = 79.624501^{\circ}$, $i = 85.382753^{\circ}$ (JPL Small-Body database)

Modelling of the stream

- The motion of all theoretical particles is followed with a numerical integration.
- The perturbation from 8 planets considered.
- Non-gravitational forces not included.
- The procedure of the modelling consists:
- (1) The integration of the parent body into past (equal to 750 orbital revolutions of parent body P_o).
 - The initial position and velocity vectors JPL ephemeris
 - The integration integrator RA15 (Everhart 1985)

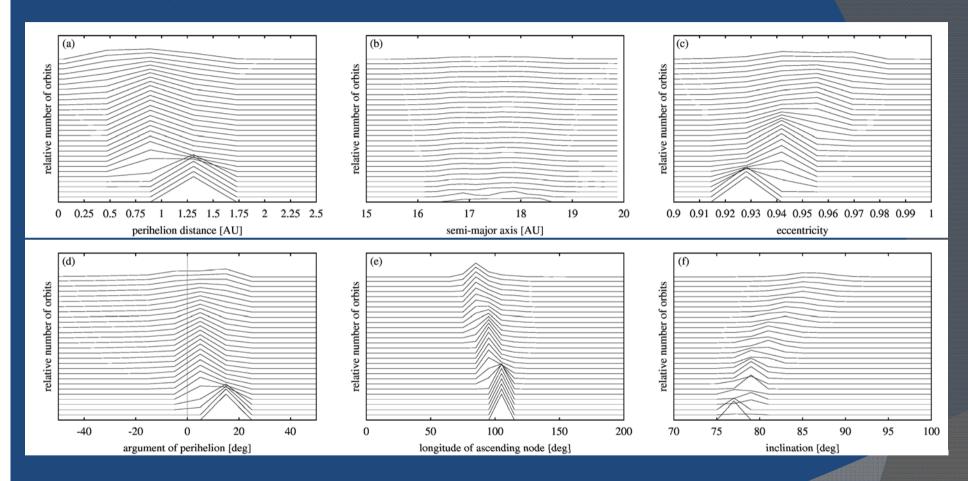
Modelling of the stream

- (2) Modelling 10 000 theoretical particles. All particles the same magnitude of the ejection velocity equal to 0.001 v_p .
- (3) Numerical integration of the stream from ejection until the present.
 - Integrator RA15 is again used.
 - The final characteristics of 8 planets and the parent body are taken as initial in this step.
- (4) The analysis of main dynamical evolutionary of the theoretical stream.
- (5) The selection of the particles crossing / passing Earth's orbit in the distance shorter than 0.05 AU.

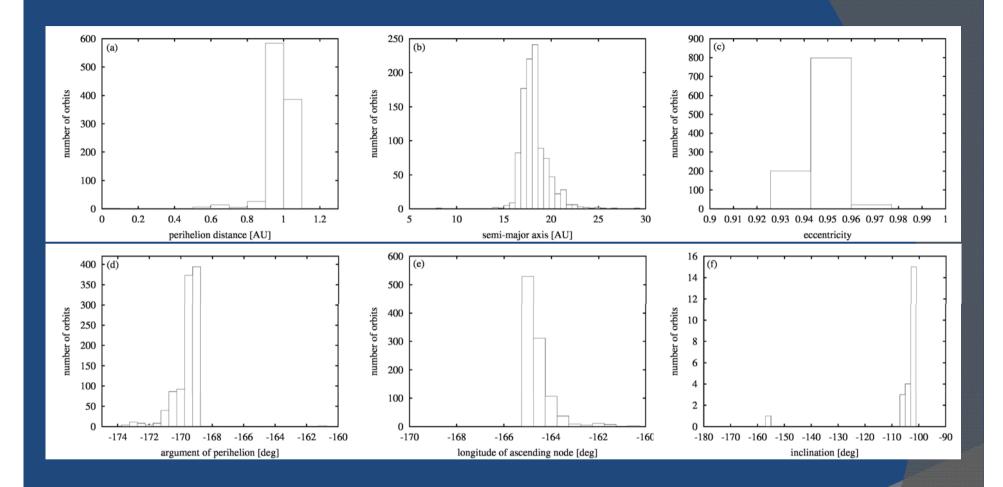
Modelling of the stream

- (6) The analysis of the dynamical evolution of the Earth-orbit approaching part of the theoretical stream.
- (7) The identification of the Earth-orbit approaching particles with the actually observed meteors.

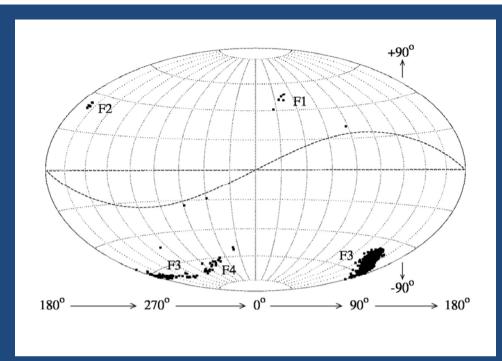
Used - 3 databases: *photographical* (Lindblad et al., 2003)


radio-meteor (Hawkins, 1963; Sekanina &

Southworth, 1975; Lindblad, 2003)


video-meteor (SonotaCo, 2009)

Identification - "break point" method (Neslušan et al., 1995)


The predicted stream

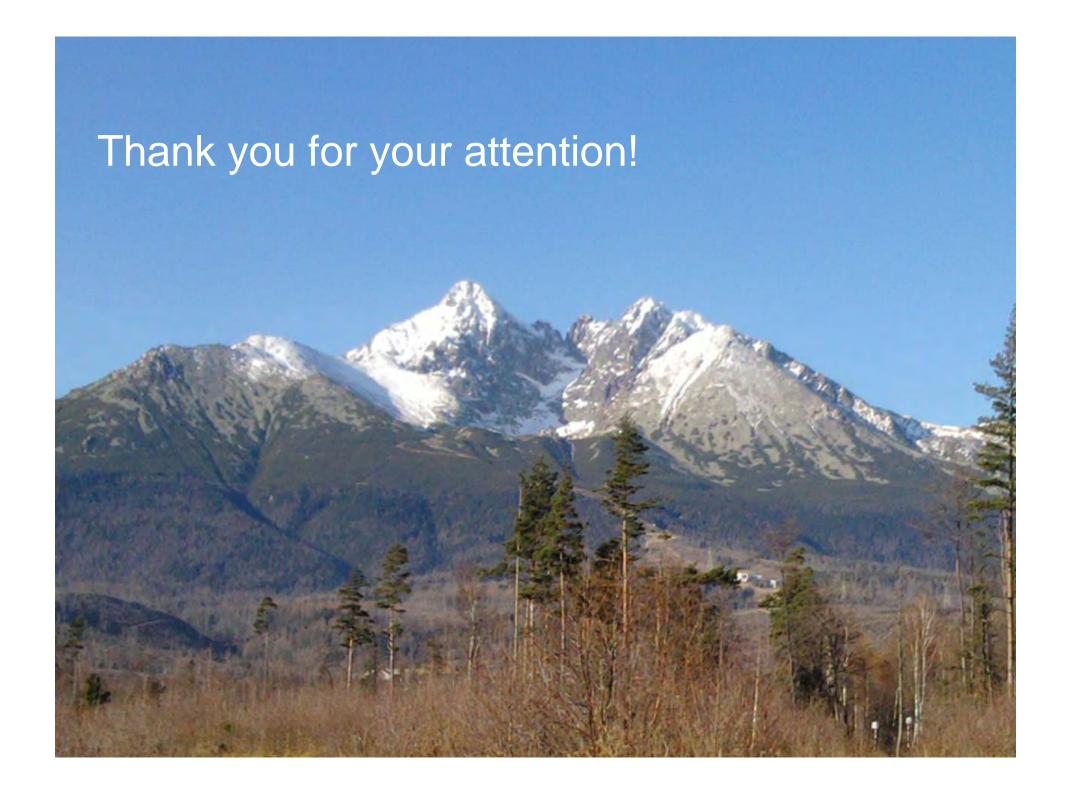
The evolution of orbital elements of theoretical stream associated with comet 122P/de Vico. The bottom curve illustrates the distribution in the time of modeling. The higher curves show the behaviour for another successive 2000-years intervals. The top curve shows the distribution at the present.

The distribution of orbital elements of the southern Earth-orbit approaching part of theoretical stream associated with comet 122P/de Vico.

Position of radiants of the 122P-stream particles. The stream is split into 4 filaments having 4 distinct areas.

fil.	br.	n	t_{max}	q	a	e	ω	Ω	i	α_g	δ_g	V_g	V_h
1	N	6	Sep. 27.57	0.437	16.8	0.975	279.2	184.4	80.4	26.8	48.1	47.9	41.3
2	N	5	Dec. 20.11	1.010	18.7	0.946	72.3	87.0	84.0	127.1	-30.5	48.5	41.3
3	\mathbf{S}	997	June 23.77	0.981	18.3	0.961	212.2	92.2	85.6	317.0	41.6	48.8	41.2
4	\mathbf{S}	23	Feb. 19.43	0.642	17.2	0.963	285.8	150.8	84.3	293.2	-65.2	49.3	41.7

Mean orbital characteristics of individual filaments of 122P stream which are predicted to appear as meteor showers in the Earth's atmosphere.


We modelled the theoretical streams for other ejection times -500, 250, 100 and 50 P_o before the present.

Less and less number of the Earth-orbit approaching particles occurred.

In model for the time 100 and $50P_o$ – no Earth-orbit approaching particles.

Conclusion

- The planetary perturbations changed a quite large number of the particles to the orbits approaching the Earth's orbit.
- These particles can hit our planet in 4 filaments (north, south).
- It appears that comet 122P/de Vico would associate a meteor shower (observable on the Earth) if its meteoroids were able to survive an extremely long period orbiting the Sun.

