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Problem: Obtain Atmospheric Trajectory via Video Triangulation

Multi-Site Video

Measurements Solar System

Orbit

£

Atmospheric
Trajectory

Knowns:

Unknowns:

Camera position/pointing
Date and approx time (UT)
FOV astrometry
Sample rate

Radiant direction o, &
Meteor position, V., deceleration
Camera timing offsets



Several deployed systems capture meteors from multiple cameras:

From 2 or more sites

With 2 or more partial tracks from the same site

....
L

Each camera may see a different portion of the track

Cameras may be out of time sync

But given space-time coincidence — it is all the same single track !
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Ceplecha 1987: Intersecting Planes followed by LMS fit to Velocity

Step 1a: Find normal to best fitting plane per camera = n,

llnear Tra
Tea,, K Step 1b: Radiant Direction = n, x n,
L
7'..
]
/ }'u/... Step 2: Measurement vectors are
/"'5... projected to CPA of the line
L) ey o
oV // /\ and positions are fit for
pevd velocity / deceleration
Normal to Plane e

of Camera 1
Measurements

n,

When there are more than two cameras,
several directions are obtained through all possible unique pairings,
and an ad hoc weighting is applied to get a single radiant solution !




Jiri Borovicka 1990: Straight Least Squares Method

Step 1: Solve for a line in 3D space that minimizes the
distance between all measurements and that line.
Alternatively one could minimize angle.

Step 2: Measurement vectors are
projected to CPA of the line
and positions are fit for
velocity / deceleration

Cameral
Measurement
Vectors

This method more naturally handles more than two cameras.
However, it produced equivalent radiant accuracy to intersecting planes !




New Solution: Fit a Multi-Parameter Motion Model to all Measurements

Single kth Camera Motion Model:
X (t=j5,) = x, + V.. *[t+ At -t ] + a(t + At - t,)

Number of Unknowns

Li,,ear . X, =3 for position
.......... ®.. V.. =3 for velocity
............................ a =0,1, or2fordeceleration
At, = #icameras for time offsets

Constrain t to be uniformly spaced 5,
(NTSC F, =29.97 Hz)

Minimize Angular Distance: Measurement to Model
min X% acos{ meas (j,k)" - [x(jds)-r,]1" }

k=1,M i=1,N___ (k)

cams meas(

Single trajectory solution from both same-site and disparate-site cameras !
Benefit: Aligns the light curves even for unsynchronized cameras !

Currently employs a Nelder-Mead, Downhill Simplex, Amoeba minimization



Function Also Provide State Vector Error Estimation

Error estimates generated for the begin point position and velocity

— Existing methods try to propagate errors and formulate closed forms expressions

— New algorithm adds a Monte-Carlo Gaussian distributed error to each measurement

— Solve over many trials with the baseline solution as the starting parameters

— Resultant variances are obtained for say 100 trials

— Feeds into the orbit estimation error analysis
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Simulation to Examine Performance

Measurement frame rate = 60 Hz (interleaved row centroids for NTSC)
Pixel angular extent = 0.28, 2.8, 10, and 20 arc-minutes
Measurement error Gaussian o= 0.3 and 1.0 pixels, 3o limit

Number of measurements uniformly distributed (integer) = [ 10, 30]
20,000 Monte-Carlo trials

Meteor has north only azimuth
Radiant elevation, uniform = [10°, 80° ]
Entry velocity, uniform = [ 12, 72 | km/sec

Spherical Earth

111 km =1°Long



Angular distance from radiant (deg)

Median of Radiant Angular Error (deg)

Radiant Error versus Convergence Angle
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Angular distance from radiant (deg)
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* Intersecting Planes Dr. Jenniskens noticed in CAMS data:
150 —e— Straight Least Squares | |
One can obtain quality solutions
. under 30° convergence angle !

2.8" [ pixel Explanation: Addition of implicit range

to the angle-angle measurements
arising from the angle subtended
over the video time step.
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Median of Radiant Angular Error (deg)

Median of Radiant Angular Error (deg)

Radiant Error Sensitivities to:

Number of Measurements

251 Site Separation ]

Median of Radiant Angular Error (deg)
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Number of Measurements per Site Site Separation Distance (km)
1.4,
12 Entry Velocity ] It is well known to:

- Separate your observing stations.

l Maximize track length for orientation.

Plots for angular resolution = 2.8/pixel

Meas o = 0.3 pixels

60 Hz interleaved row centroid measurements
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Median of Radiant Angular Error (deg)

Radiant Error for Various Sensor Resolutions (Fixed Measurement o = 0.3 pixels)
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Wide field and all-sky cameras can improve

their radiant estimation performance !

Note change in vertical scale




Median of Radiant Angular Error (deg)

Radiant Error Comparing 2, 3, and 4 Observation Sites
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With 3 or more sites, the least
squares and parameter fit produce
equivalent performance !




Summary

e New trajectory estimation technique developed

— Multi-parameter fit of multiple un-synchronized cameras to a
single-track motion model

— Provides improved accuracy for:
— Low convergence angle
— Smaller site separation

— Available as a self-contained C function file “TrajectorySolution.h”

— Potential Improvements
— Simulated Annealing minimization
— Add measurement specific error to minimization cost function

— Ingest Azim-N/Elev, Azim-S/ZenAng, versus Ra/Dec only



Backup Charts

Downhill Simplex function minimization
Radiant error insensitivity to meteor geometry
Radiant error for closely separated sites / 5° FOV

Radiant error for various measurement error levels



Trajectory Minimization Solver Implemented in C

Nelder-Mead, Downhill Simplex, or Amoeba minimization
— Function evaluations only, no gradients
— Requires good initial guesses to find global minimum

— Intersecting planes, LMS velocity fit, time offsets solved with others constrained

— Final iterative solution includes all parameters with no constraints
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No obvious dependency on

meteor geometry and site positioning:

Plots for angular resolution = 2.87/pixel,
Convergence angle > 20°

meas o = 0.3 pixels




Median of Radiant Angular Error (deg)

Median of Radiant Angular Error (deg)
N

w
o

w

n
o
:

N

=
o
:

=
T

©
o

(@)

Radiant Error for Closely Separated Sites / 5° FOV
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Elevation Angle > 35°
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Avoid low elevation angles and hope for long meteors !
Plots for angular resolution = 0.57/pixel, meas o = 0.3 pixels




Median of Radiant Angular Error (deg)

Radiant Error for Various Measurement Errors (Fixed Sensor Resolution)

Resolution = 20’ /pixel
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Radiant error directly proportional
to measurement accuracy

for all resolutions (except IP)




