Leonid meteoroids from different filaments

Pavel Koten

Astronomical Institute of ASCR Ondřejov observatory, Czech Republic

International Meteor Conference 2011, Sibiu, Romania, September 15-88

Leonids in 1999-2009

Observations, equipment, methods

Beginning heights and properties of meteoroids

Results and comparison of different filaments

Leonids between 1998 and 2009

comet 55P/Tempel-Tuttle - perihelion 1998 February 28 strong activity or storms in 1998 – 2002 another enhanced activity 2006 and 2009

different filaments of the stream, i.e. different time of ejection from parent comet

(situation in 2001 by D. Asher)

Individual filaments

Year	1998	1999	2000	2001	2002	2006	2009
Date	17.11.	18.11	18.11	18.11.	19.11.	19.11.	17.11.
Time	1:29	2:13	3:48	10:06	4:02	4:45	21:44
[UT]		1:49	7:57	18:25	10:48		22:02
				17:59			
Year of	1333	1899	1733	1767	1767	1932	1466
ejection		1932	1866	1866	1866		1533
				1699			
Note	fireballs	OK	OK	OK	clouds	OK	OK
		OK	-	-	-		OK
				-			

Sources – Vaubaillon et al. (2005); McNaught and Asher (1999)

Our observations of Leonids

Year	Filaments	Location	Number of
	(age)		D-S Leonids
1999	1899, 1932	Spain	97
	(3, 2)		
2000	1733	Spain	54
	(8)		
2001	1767	Arizona USA	362
	(7)		
2006	1932	Czech	27
	(2)	Republic, UK	
2009	1466, 1533	Tajikistan	56
	(16, 14)		

D-S means double-station (D_{SH}, D' criterions)

Instrumentation

S-VHS video camera + image intensifier Dedal-41 (till 2002) Mullard XX1332

Arsat 50mm/F1.4: Ø FOV = 25°/44° MLM +5.0m

spectral camera 600 grooves/mm

Observation in Tajikistan 2009

Dust-ball model

Hawkes & Jones (MNRAS, 1975): silicate or iron grains (3000 – 3500 K) + organic "glue" (~ 1300 K) radiation – only grains, not glue

implications:

Beginning height constant (for the same velocity meteors)

Height of maximum light, terminal height – constant for smaller particles, decreasing for bigger masses of meteoroids

Beginning heights of different showers

Geminids – almost constant other showers – increasing HB

GEM – just beginning of ablation and radiation others – actual beginning higher, observation at sensitivity limit

More fragile meteoroids = = more steep curve

(Koten et al., A&A, 2004)

Beginning heights in 2009

Leonids 2009:

beginning heights: single and double station data

single station – estimated trajectories, wide spread of height data => useful for activity profile, mass index etc.

Distribution of beginning heights

distribution of H_B shows increase with mass

2009: slope *k* = 6.5

Parameter K_B

One dimensional parameter – eliminates potential effect of different zenith distance of radiant (observations in different countries)

$$K_B = \log(\rho_B) + 2.5 \log(v_{\infty}) - 0.5 \log \cos(z_R)$$

Do we observe same effect for K_B as for H_B ?

K_B vs. m_{phot}

<u>Leonids 2009:</u> K_B decreases with increasing mass

observed among all studied filaments

not zenith distance of radiant effect

Comparison of different filaments

each line represents whole range of observed masses and beginning heights

different Leonid filaments = different values of k(slope H_B vs. M_{phot})

(Geminids for comparison - almost mass independent)

Fragility vs. time from ejection

higher *k* => more fragile particles (theoretical limit is 10)

does it depend on age? idea: dust is more influenced by spaceweathering

1466, 1533 - support idea

Conclusions

10 years of Leonid outbursts and storms

- samples of different age of meteoroids
- All filaments more fragile material (according to H_B in the atmosphere)
- Small differences among filaments
- Suspicion fragility dependence on age cannot be clearly confirmed
- Next work => search for possible reasons

Acknowledgement

Thanks to all people who contributed individual Leonid campaigns:

- P. Spurný, J. Borovička, H. Betlem (management of campaigns)
- A. Kolář, R. Štork, P. Trepka, A. Spurná, S. Evans, A. Elliott etc. (observations)

Work supported by Grant Agency of Czech Republic, grant no. 205/09/1302.

THANK YOU FOR YOUR ATTENTION!