

Departamento de Astrofísica y CC de la Atmósfera Universidad Complutense de Madrid



### **Narrow-band photometry of meteors**



#### Francisco Ocaña González

Final year research project , under the supervision of Profs. Jaime Zamorano & Jesús Gallego

## Index

- **1.-** Introduction
- 2.- Objectives of the research project
- 3.- Theory of meteors' radiation emission
- 4.- Detection optimization: effectivity and contrast
- 5.- Narrow-band photometry of meteors
- 6.- Theoretical development: simulation
- 7.- Experimental development
- 8.- Conclusions

# 1.- Introduction

- Meteoroids, meteors and fireballs.
- UCM Fireball and Meteor Detection Station (node of the SPMN)
- Light Pollution at the UCM Observatory



# 2.- Objectives of the research project

- Optimization of meteor detection studying geometry and emission properties.
- Feasibility study of the narrow-band meteor photometry.
- Design a photometric system to maximize the scientific output.
- Prove the theoretical study developing an experimental setup.

## 3.- Theory of meteors' radiation emission

• Meteors radiation emission

$$I_{\nu} = B_{\nu} (1 - e^{-\tau_{\nu}})$$

- Chemical and thermal emission
- Optically thick



Model (Τ, Ν, Γ parameters)

Calculation of the 3 parameters by fitting intensities  $I_{\nu}$ 

# Theory of meteors' radiation emission

- Abundances and intensities determination
  - Calculating I<sub>v</sub>  $\Im_{\lambda} = PI_{\lambda}$ Spectroscopy  $\Im_{\lambda} = \Im_{0}e^{\frac{-(\lambda \lambda_{0})}{\Delta^{2}}}$   $\Im = \int Im_{\lambda} d\lambda = \pi^{1/2} \Delta \Im_{0}$
- Result
  - ➢ Main component: (4300±300)K to (7800±500)K
    ➢ Hot component: (10000±1000)K to (14500±1000)K to (14500±1000)K (intensity very sensitive to speed)

# 4.- Detection Optimization

## Effectivity: Reduced Area



$$A_{red} = \sum_{i} A_i \cdot r^{5\log\frac{H}{d_i} - \varepsilon_i - \delta_i}$$

Equivalent area is directly proportional to the number of detections.

Light pollution shifts the position of the optimal pointing.



### Contrast

Espectro cielo polucionado



## 5.- Narrow-band meteor photometry

- Emission and continuum measures
- Measuring at least
  Ca, Cr, Fe, Mg, Mn, N, Na y Si
- $\clubsuit$  System reffered to  $N_{Fe}$
- ✤ Optical range (H&K CaII 800nm)
- Hot and main components
- ♦ Filter bandwidth~10nm → R~50
- Elements with different excitation states
- ★ Cost of the setup is proportional to the number of bands → modular







|           | Características          |            |                           |                           |                                                  |  |
|-----------|--------------------------|------------|---------------------------|---------------------------|--------------------------------------------------|--|
| Filtro    | $\lambda_{central} (nm)$ | Ancho (nm) | 1 <sup>a</sup> Componente | 2 <sup>a</sup> Componente | Comentarios                                      |  |
| $C^2$     | 395,0                    | 7          | CaII(1) y otras débiles   | $\operatorname{CaII}(1)$  |                                                  |  |
| $A^1$     | 403,0                    | 8          | MnI(2) + FeI(43)          |                           |                                                  |  |
| $C^1$     | 420,5                    | 8          | CaI(2) + FeI(varios)      |                           |                                                  |  |
| $R^{1a}$  | 427,0                    | 5          | CrI(1) + FeI(152)         |                           | Banda estrecha para evitar líneas próximas       |  |
| $F^{1b}$  | 437,0                    | 11         | FeI(2) + FeI(41)          |                           |                                                  |  |
| $M^2$     | 448,0                    | 8          |                           | MgII(4)                   |                                                  |  |
| $F^2$     | 497,0                    | 12         | FeI(318)                  | FeII(42)                  |                                                  |  |
| $M^1$     | 515,0                    | 9          | MgI(2) + FeI(37) + CrI(7) |                           |                                                  |  |
| $R^{1b}$  | 524,5                    | 10         | CrI(18) + FeI(varios)     |                           |                                                  |  |
| $F^{1a}$  | 541,5                    | 10         | FeI(15)                   |                           |                                                  |  |
| $D^1$     | 589,5                    | 10         | NaI(1)                    |                           | Línea D del NaI                                  |  |
| $S^2$     | 636,0                    | 12         |                           | SiII(2)                   |                                                  |  |
| $H^2$     | 657,0                    | 12         |                           | HI(1)                     | Línea $H\alpha$                                  |  |
| $N^2$     | 744,0                    | 16         |                           | NI(3)                     |                                                  |  |
| $O^2$     | 777,0                    | 15         |                           | OI(1)                     |                                                  |  |
| $B^b$     | 475,0                    | 8          |                           |                           | componente 'Black body' zona azul                |  |
| $B^{FeO}$ | 580,0                    | 10         |                           |                           | máximo bandas FeO $(\nu', \nu'') = (7,3); (6,2)$ |  |
| $B^r$     | 605,0                    | 12         |                           |                           | banda $N_2^+$ , FeO en la zona roja              |  |
| $B^m$     | 700,0                    | 15         |                           |                           | máximo 'Black body'                              |  |

# Spectroscopy vs. Narrow-band photometry

- Photometry automatization
- Larger efficiency, similar in all the bands
- No orders' overlap
- Individual fitting for each emission line/group





## 6.- Theoretical development: simulation

• Input: convoluted spectra using detector QE

$$F_{sky} = \int_{365\,nm}^{900\,nm} F_{sky,\lambda} \, d_{\lambda} \qquad \qquad F_{obj} = \int_{365\,nm}^{900\,nm} F_{obj,\lambda} \, d_{\lambda}$$

• Filter simulation width= $\lambda_2 - \lambda_1$ 

$$F_{sky} = \int_{\lambda_1}^{\lambda_2} F_{sky,\lambda} \, d_\lambda \qquad \qquad F_{obj} = \int_{\lambda_1}^{\lambda_2} F_{obj,\lambda} \, d_\lambda$$

• Simulated data pipeline

• Signal-to-noise determination

$$SNR = \frac{N_o}{\sqrt{\frac{1}{g}(N_o + A \cdot n_s) + A\frac{R^2}{g^2}}}$$



Compromise between the lines flux and resolution

Espectro bolido a 10 nm

• Doublets and multiplets





# 7.- Experimental development

|        | (         | Característica | s                         |               |
|--------|-----------|----------------|---------------------------|---------------|
| Ref.   | $\lambda$ | ancho          | líneas                    | transmitancia |
| #65616 | 394nm     | 10 nm          | H&K CaII                  | >0.3          |
| #65623 | 436nm     | 10nm           | FeI(varios)               | >0.4          |
| #65638 | 515nm     | 10 nm          | MgI(2) + FeI(37) + CrI(7) | >0.45         |
| #65647 | 589 nm    | 10 nm          | D NaI                     | >0.45         |

• Interference filters: angle of incidence

• New magnitude limit of the system

$$\alpha = \frac{\int\limits_{365 nm}^{900 nm} F_{obj,\lambda} \, d_{\lambda}}{\int\limits_{\lambda_1}^{\lambda_2} F_{obj,\lambda} \, d_{\lambda}}$$

$$M_{det,515\,nm} = M_{det,clear} - 2, 5 \cdot \log \alpha$$

# **Observations**

- 2 all-sky cameras (28/04 - 08/05)
  - No filter
  - MgI 518 nm

- 3 cameras 60° x 40° (09/05 - )
  - No filter
  - MgI 518 nm
  - FeI 436 nm



# UCM 05052011



2011/05/05 D4:05:29.035 UTC SPMN UCM Madrid 07 V00011+144

04:05:29 TU

Eta-Acuarid -7

Detected by several SPMN stations

# 8.- Results and conclusions

- Light pollution modifies the optimal pointing, and reduces the detection capability of the system.
- The use of photometric filters improves the detection of fireballs in certain bands (better SNR than without filters).
- We propose the use of a narrow-band photometric system, R~50, suitable for many scientific cases.
- The experimental setup, based on the system here proposed and the theoretical simulation, is working at Observatorio UCM, and has detected several events.
- Future improvements: to increase the dynamic range to cover the whole lightcurve of the fireballs and the use of professional filters.



10 Sept 2011 – 04:46 TU AllSky Camera (Nikon D60 + Peleng 8mm)

#### AllSky video camera No filter

2011/09/10 04:46:08.962 UTC SPMN UCM Madrid 07

V00023+194

Q

#### Video 72 x 54 deg 518nm MgII

2011/09/10 04:46:09.0 1010

V00010+061 UF0CaptureV2

#### Video 72 x 54 deg 436nm Fel

2011/09/10 04:46:09.3 0561

V00002+042 UF0CaptureV2