

ON ASTROMETRY OF VERY BRIGHT VIDEO METEORS Damir Šegon

Croatian Meteor Network Višnjan Science and Education Center Astronomical Society "Istra" Pula

damir.segon@pu.htnet.hr

www.astro.hr/hmm/index.html

www.adip.hr

Contents

- 1. Introduction
- 2. Orbit requirements
- 3. Bright meteors
- 4. Tracing the trail: manual corrections and results
- 5. Where is the limit of displacement's infulence?
- 6. Consequences on resulting orbits
- 7. Further investigations and possible solutions
- 8. Conclusion

Introduction : CMN Astrometry

- good FOV calibration, typically 5.000 stars (+15.000) used for calibration
- typical astrometric error: 3-4', FOV calibration re-checking

Introduction : CMN orbits -> UFOOrbit software

- orbits calculated via UO
- in very good agreement with other networks results (SonotaCo)
- still, unexpected errors in case of bright meteors

Introduction : CMN multistation meteors - common

- "High density" sky coverage - multi-station meteors

Orbit requirements: direction

- vector direction (radiant postion) error not critical, if lenght>3 degrees

Orbit requirements: velocity

- estimated error of +/-0.5km/s, even bigger in case of bright meteors?

Bright meteors : What is wrong?

- captured from 7 stations, long enough, good angle
- velocity error larger than for fainter meteors of similar geometry

Bright meteors : error not due to poor detection quality...

- extracted frames show good centroid positions

Bright meteors : ... but centroid displacement

- real meteor path can be seen as meteor trail
- displacement depends on brightness and distance from center
- displacement affects angular speed of "path unaffected" meteors
- caused by optical aberrations in whole (front cover + lens)

Bright Meteors: this is what is wrong...

due to displacement of whole path, larger error in radiant position
due to "longer path", meteor results to be faster than it really is

Tracing the trail

- CMN SkyPatrolAnalyzer software used for correcting displacement by following meteor trail from several frames
- manualy corrected and least-squares adjusted path used as direction, original detections (projected on that same path) for velocity estimation
- new software used for trajectory/velocity calculation (still testing)

Tracing the trail: fast fireball

Tracing the trail : very slow fireball

Tracing the trail : very slow fireball

Where is the limit of displacement's infulence?

- displacement on the edge of FOV

- displacement on r~ 50% of FOV

Consequences on resulting orbits (if astrometry is done automatically)

- positional error bigger than in case of "ordinary" meteors
- bright meteors tend to result faster than they really are
- responsable for a part of shower meteors on hyperbolic orbits?

Further investigations (and possible solutions?)

Goals:

- find relation between detection's intensity and displacement
- find up to which level this displacement affects "ordinary" meteors

HOW:

- calibration on stars including intensity
- use planet positions for calibration?
- calibration using artificial stars
- use very bright meteors for calibration

Conclusions

- in some cases it is possible to do good astrometry on very bright video meteors (at least manually)
- optical system aberrations cause centroid displacement on CMN's video images
- if relation describing this displacement could be found, it could be possible to process very bright meteors automatically, at least with better precision than now
- further investigation will show if not too bright meteors suffer from same problem

Thank you for your attention!

Questions?