

Julia Marín-Yaseli de la Parra ESAC Trainee project 1st July – 1st September 2010

Trainee Objective:

Main; check the Zenithal attraction

- So...Comparing a 2B-simulator with the zenithal attraction approximation
- How to...developing a powerful tool and see the differences

Introduction:

Previous Analysis:

Feasibility of the software;

Software	Gravit, sir ulator Tony Du	GMAT NASA	STA ESA	JAL AR ESA , in off	STK Private (AGI)	Own Me
Assessment	Bad	Good	Good	Regular/Bad	Good	The best
Best points	None	Better integrators	Better interfaces	OP conversions	Very well validated	Most suitable
Worst points	All	No able to introduce automatic inputs	Only TLE's format available Not competely validatec	Designed to transference orbits	Very expensive licenses	Long time to develop it Validation
	SPIC Good asse	esment V	ery powerfull tool	Ha	ard to understand	2

Analysis:

RAdiant N-Body Orbit Tool

X RANBO software X Julia M. de la Parra

- Purpose; to create an accurate software, freeware and being able to be integrated as a module into VMO.
 - Code; C++
 - compiler; Dev C++
 - Integrator; Runge Kutta
 - Divided into modules

16th -19th September 2010

- 🗆 🗙

Inputs 1.1 - Reading VMO data file 1.2- Reading data manually 1.3- Module of VMO

🍇 C:\Ranbo\Ranbo.exe

For introducing data handly write 1 :For introducing data from file write 2: Choose an option:

- 🗆 ×

Inputs o 1.1 - Reading VMO data file o 1.2- Reading data manually o 1.3- Module of VMO C:\Ranbo\Ranbo.exe For introducing data handly write 1 For introducing data from file write 2

Choose an option: 56 Not valid command For introducing data handly write 1 For introducing data from file write 2 Choose an option:

Initial conditions (Cartesian, km) Longitude (degrees:

Latitude(degrees):

Height (km):

Observed Right Ascension (degrees:

Observed declination (degrees):

Observed velocity (km/sec):

Presione una tecla para continuar . . . _

16th -19th September 2010

Inputs o 1.1 - Reading VMO data file o 1.2- Reading data manually o 1.3- Module of VMO C:\Ranbo\Ranbo.exe For introducing data handly write 1 For introducing data from file write 2 Choose an option: 56 Not valid command

For introducing data handly write 1 For introducing data from file write 2 Choose an option:

Initial conditions (Cartesian, km) Longitude (degrees:

Latitude(degrees):

Height (km):

Observed Right Ascension (degrees:

Observed declination (degrees):

Observed velocity (km/sec):

Presione una tecla para continuar . . . _

16th -19th September 2010

18

10 of

- 🗆 ×

- 🗆 🗙

Inputs o 1.1 - Reading VMO data file o 1.2- Reading data manually o 1.3- Module of VMO C:\Ranbo\Ranbo.exe

For introducing data handly write 1 For introducing data from file write 2 Choose an option:

reading file from C/RANBO/vmo-product.dat Presione una tecla para continuar . . .

16th -19th September 2010

Integrator

- Runge-Kutta-Fehlberg method; algorithm of numerical analysis
 - <u>Error</u>: Can be estimated and controlled and an appropriate step size can be determined automatically.
 - Efficient for ordinary problems of automated numerical integration

$$k_{1} = h \cdot f(\boldsymbol{x}_{k})$$

$$k_{2} = h \cdot f(\boldsymbol{x}_{k} + \frac{1}{4}k_{1})$$

$$k_{3} = h \cdot f(\boldsymbol{x}_{k} + \frac{3}{32}k_{1} + \frac{9}{32}k_{2})$$

$$k_{4} = h \cdot f(\boldsymbol{x}_{k} + \frac{1932}{2197}k_{1} - \frac{7200}{2197}k_{2} + \frac{7296}{2197}k_{3})$$

$$k_{5} = h \cdot f(\boldsymbol{x}_{k} + \frac{439}{216}k_{1} - 8k_{2} + \frac{3680}{513}k_{3} - \frac{845}{4104}k_{4})$$

$$k_{6} = h \cdot f(\boldsymbol{x}_{k} - \frac{8}{27}k_{1} + 2k_{2} - \frac{3544}{2565}k_{3} + \frac{1859}{4104}k_{4} - \frac{11}{40}k_{5})$$

$$k_{k+1} = \boldsymbol{x}_{k} + \frac{16}{135}k_{1} + \frac{6656}{12825}k_{3} + \frac{28561}{56430}k_{4} - \frac{9}{50}k_{5} + \frac{2}{55}k_{5}$$

13 of

16th -19th September 2010

14 of

Results

Paramete	Zenital Attr.	2-Body	N-Body
a (AU)	6.207	6.438	5
e	0.848	0.853	5
i (deg)	113.01	113.45	?
ω (deg)	148.20	147.89	5
Ω (deg)	139.79	139.79	?
v (deg)	/	/	?

 Data from: ORB-BARGE-PER2007_100-M007 Comparing MOTS 2.0 with FirBal (Ceplecha 1987) D. Koschny, J. Borovicka

• Test plan (TBD) Last, but not least...User Manual

Make it simple!!

Next steps; Software improvements Software validation Documentation :S Comparison btw methods

Thank you very much

JULIA.MP@UNIZAR.ES

International Meteor Conference 2010 Armagh - Northern Ireland (U)

