- Michael Sidonio
- An Australian
- An award winning amateur astronomer
- Claimed to be the world's strongest astronomer
- ... demonstrated with a 153 kg sandstone sphere

IMC 2010, Armagh, Northern Ireland, 16th-19th September 2010

Hypervelocity Artificial Meteoroid Experiment (HAM•E) Brief overview of a mission concept

David Cullen¹, Jorgina Busquets Corominasa², Guillaume Mathon-Margueritte² & Peter Roberts²

¹Cranfield Health & ²School of Engineering, Cranfield University, UK,

Recent history

- HAM•E evolved from discussions between
 - David Cullen (Cranfield) and Peter Roberts (Cranfield) in mid 2008
 - Cullen, Monica Grady (Open University) and Jason Hatton (ESA) in late 2009
- Mission concept and options study
 - Two individual MSc research projects within Cranfield's MSc in Astronautics & Space Engineering in late spring / summer 2010
 - Jorgina Busquets Corominasa Hypervelocity Artificial Meteoroid Experiment (HAM•E) – A Feasibility Study
 - Guillaume Mathon-Margueritte Hypervelocity Artificial Meteoroid Experiment (HAM•E) – Atmospheric Entry and Trajectory Options

Further background / context

- No observed meteor event where the starting (boundary) conditions of the associated meteoroid are fully known ... even 2008 TC3
- Therefore current understanding of meteoric science severely limited
- Number of recent hypervelocity atmospheric entry observation campaigns for the entry of man-made objects
 - Stardust, Genesis and Hayabusa, ESA's ATV-1 "Jules Verne"
 - 1960's NASA ~1g artificial metal meteor studies using sounding rockets and shaped charge accelerators
- Detailed observational campaigns requires knowledge of entry location and time and trajectory
 - Not possible for natural meteor events for multi-kilogram bodies

Hypervelocity Artificial Meteoroids Experiment (HAM•E)

- Objectives
 - To deliver one, or more, fully characterised artificial meteoroids into the Earth's atmosphere with combined mass of ~175kg
 - To enter meteoroids into Earth's atmosphere at a velocity ≥ 11 km/s and at a pre-determined time and location
 - To couple meteoroid(s) entry with an extensive, space, airborne and ground based observation campaign

Crai

Hypervelocity Artificial Meteoroids Experiment (HAM•E) Lunar free-return option - part 1

153 kg sandstone sphere ... or combination of bodies

Soyuz with Fregat upper stage

Lunar free-return trajectory

Cranfie

Hypervelocity Artificial Meteoroids Experiment (HAM•E) Lunar free-return option - part 2

Space and airborne and ground based observation campaign

Cran

Key known's

- Known entry location
- Known entry time
- Known meteoroid trajectory* & velocity*
- Known meteoroid mass
- Known meteoroid shape
- Known meteoroid internal structure
- Known meteoroid mineralogy
- Known meteoroid organic content
- Known "Life" content
- Known ... "please inset" ...

• How many natural event cases are the above known?

Other mission scenarios

- Other trajectories
 - Lunar free return
 - Lunar flyby from GTO
 - High elliptical orbit from GTO
 - GTO
 - Interplanetary mission (Flyby to Venus and Earth)
- Artificial meteoroid bodies possible parameters
 - Mineralogy basaltic, sedimentary
 - Organics content
 - Microbial content
 - Mass
 - Shape
 - Internal structure / faulting
 - First re-flight of an existing meteorite?

Outline science objectives

- Top level science objectives
 - Validation and calibration of models and techniques
 - Reappraisal of existing Earth meteorite record
 - Addressing question of the evolution of the Early Earth including the emergency of Life
 - *i.e.* delivery of material to the Early Earth
 - *i.e.* general environmental impact
 - Understanding the current and future threat of Near Earth Objects
- Key pragmatic question
 - can proposed science returns justify dedicated launch ...
 - ... or only financially viable via much lower cost
 - sounding rocket ... or
 - ... piggy-backed launch?

Immediate route forward

- Upcoming 2010 Call for a Medium-size mission opportunity in ESA's Science Programme for a launch in 2022 (≤€470m cost to ESA)
- Call includes "a mix of smaller missions approximately equivalent, in terms of overall financial envelope and profile, to one M mission could also result from the present Call" (Soyuz based HAM•E <<€100m)

Deadline 2nd December 2010

- Proposal contents
 - Mission case (\checkmark) help!
 - Observation case (?) help!!!
 - Science case (??) help!!!!!
- Also ... create an ESA Topical Team
- Also ... further mission design consideration via group design project within Cranfield's MSc in Astronautics & Space Engineering (equivalent to >48 person months design effort)