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History
• Established by NASA Headquarters Office of Safety and 

Mission Assurance (OSMA) at beginning of FY05 as the 
NASA organization responsible for meteoroid 
environments pertaining to spacecraft engineering and 
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History
• Established by NASA Headquarters Office of Safety and 

Mission Assurance (OSMA) at beginning of FY05 as the 
NASA organization responsible for meteoroid 
environments pertaining to spacecraft engineering and 
operations.

• Result of recent Leonid meteor storms and Columbia 
Accident Investigations Board recommendations.

• First official NASA meteoroid program since 1970, when 
the meteoroid group at Johnson Space Center was 
disbanded.

• Located at Marshall Space Flight Center in Huntsville, 
Alabama.
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Primary Functions
• Develop, maintain, and distribute a new, more accurate 

sporadic (background) meteoroid model

• Provide meteor shower forecasts to NASA spacecraft 
operators

• Conduct and manage research to improve sporadic and 
shower meteoroid models, including validation and 
uncertainty determination which are required inputs to 
Probabilistic Risk Assessments

• Coordinate the existing meteoroid expertise at NASA 
centers to help accomplish the above

• Roles and responsibilities spelled out in NASA NPR 
8715.3c (http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_8715_003C_&page_name=Chapter11)
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Who cares?

Navy Transit Satellite
(before being shot with a 5 cm Aluminum ball 

moving at 6 kilometers per second)
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Who cares?

The Aftermath
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Meteor shower forecasting
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Stream Modeling

• Particles ejected from comet and 
dynamically evolved. Ensemble of particles 
near target at chosen time determines 
shower characteristics.

• Numerically intensive – many 
thousands (millions) of particles.

• Multiple peaks; times and intensities of 
shower maxima can be obtained.

• Shower durations difficult to derive.
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• Output for past years compared to IMO ZHR 
profiles or other historical observations. 
“Calibrates” the model and enables ZHR 
predictions for future.
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• Output for past years compared to IMO ZHR 
profiles or other historical observations. 
“Calibrates” the model and enables ZHR 
predictions for future.

• Only showers with potential to outburst/
storm are evaluated using stream model 
technique. In other cases, an average 
observed ZHR profile is used.

• ZHRs converted to fluxes using visually-
determined population/mass indices.
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Annual Forecast

• Issued to NASA spacecraft programs (ISS, Shuttle, 
Chandra) and others as requested.

• Re-evaluations of outburst and storm predictions 
performed as new information becomes available.

• Maximum ZHRs, peak times, and durations are 
added to existing database of “normal” showers.

• Penetrating fluxes are generated at 1 hour 
intervals for entire year.
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Why these sizes?
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Shuttle FRR Forecasts

• Mission launch and end time received from JSC.
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Shuttle FRR Forecasts

• Mission launch and end time received from JSC.

• Computer code generates penetrating fluxes at 1 
minute intervals for mission.

• Flux factors computed relative to the sporadic 
meteoroid background.

• Calculations sent to JSC for inclusion in mission 
meteoroid/orbital debris risk assessment (Shuttle 
version of BUMPER code).

• 6-hour fluences also calculated for EVA risk.
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Verification

• IMO ZHRs are not only used in forecast 
generation, but also are used in validation 
of a shower forecast after the event.
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Verification

• IMO ZHRs are not only used in forecast 
generation, but also are used in validation 
of a shower forecast after the event.

• A few weeks are allowed for the numbers 
to be revised. We do not use the “real-
time” ZHRs unless there is an anomaly 
investigation with tight deadlines.
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The Landsat 5 Anomaly

• At 5:23 UT on August 13, 2009, Landsat 5 lost 
attitude control (tumbling) while over Alaska.
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The Landsat 5 Anomaly

• At 5:23 UT on August 13, 2009, Landsat 5 lost 
attitude control (tumbling) while over Alaska.

• Control restored within hours; normal 
operations resumed after 2 days.

• Similar to 1993 OLYMPUS anomaly, which also 
occurred during a major Perseid outburst.

• Analysis showed Perseid radiant was visible 
from satellite at time of loss of control - 
Perseid strike possible.
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Pros and Cons of Visual Observations

• Pros:

• Many experienced meteor observers

• Good global coverage

• Accessible data

• Cons:

• Visual observations hampered by weather and 
moonlight

• Forecasts bias observers
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Perseids from Space

STS-105
August 10-22, 2001
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