Uses of Amateur Meteor Data in NASA Spacecraft Operations and Design

Bill Cooke
NASA Meteoroid Environments Office
william.j.cooke@nasa.gov
How NASA handles space debris

Earth-approaching asteroids

Near Earth Object Office (JPL)

Meteoroids and meteors

Meteoroid Environment Office (MSFC)

Man-made orbital debris

Orbital Debris Program Office (JSC)
MEO Overview
History

- Established by NASA Headquarters Office of Safety and Mission Assurance (OSMA) at beginning of FY05 as the NASA organization responsible for meteoroid environments pertaining to spacecraft engineering and operations.
History

• Established by NASA Headquarters Office of Safety and Mission Assurance (OSMA) at beginning of FY05 as the NASA organization responsible for meteoroid environments pertaining to spacecraft engineering and operations.

• Result of recent Leonid meteor storms and Columbia Accident Investigations Board recommendations.
History

- Established by NASA Headquarters Office of Safety and Mission Assurance (OSMA) at beginning of FY05 as the NASA organization responsible for meteoroid environments pertaining to spacecraft engineering and operations.

- Result of recent Leonid meteor storms and Columbia Accident Investigations Board recommendations.

- First official NASA meteoroid program since 1970, when the meteoroid group at Johnson Space Center was disbanded.
History

• Established by NASA Headquarters Office of Safety and Mission Assurance (OSMA) at beginning of FY05 as the NASA organization responsible for meteoroid environments pertaining to spacecraft engineering and operations.

• Result of recent Leonid meteor storms and Columbia Accident Investigations Board recommendations.

• First official NASA meteoroid program since 1970, when the meteoroid group at Johnson Space Center was disbanded.

• Located at Marshall Space Flight Center in Huntsville, Alabama.
Primary Functions

• Develop, maintain, and distribute a new, more accurate sporadic (background) meteoroid model
Primary Functions

• Develop, maintain, and distribute a new, more accurate sporadic (background) meteoroid model

• Provide meteor shower forecasts to NASA spacecraft operators
Primary Functions

• Develop, maintain, and distribute a new, more accurate sporadic (background) meteoroid model

• Provide meteor shower forecasts to NASA spacecraft operators

• Conduct and manage research to improve sporadic and shower meteoroid models, including validation and uncertainty determination which are required inputs to Probabilistic Risk Assessments
Primary Functions

- Develop, maintain, and distribute a new, more accurate sporadic (background) meteoroid model
- Provide meteor shower forecasts to NASA spacecraft operators
- Conduct and manage research to improve sporadic and shower meteoroid models, including validation and uncertainty determination which are required inputs to Probabilistic Risk Assessments
- Coordinate the existing meteoroid expertise at NASA centers to help accomplish the above
Primary Functions

- Develop, maintain, and distribute a new, more accurate sporadic (background) meteoroid model
- Provide meteor shower forecasts to NASA spacecraft operators
- Conduct and manage research to improve sporadic and shower meteoroid models, including validation and uncertainty determination which are required inputs to Probabilistic Risk Assessments
- Coordinate the existing meteoroid expertise at NASA centers to help accomplish the above
MEO Staff

- Dr. Bill Cooke – Management and data analysis
MEO Staff

- Dr. Bill Cooke – Management and data analysis
- Dr. Rob Suggs – Data analysis and collection; oversees lunar impact monitoring
MEO Staff

• Dr. Bill Cooke – Management and data analysis
• Dr. Rob Suggs – Data analysis and collection; oversees lunar impact monitoring
• Heather Koehler (McNamara) - Modeling and software development
MEO Staff

- Dr. Bill Cooke – Management and data analysis
- Dr. Rob Suggs – Data analysis and collection; oversees lunar impact monitoring
- Heather Koehler (McNamara) - Modeling and software development
- Danielle Moser - Support contractor (meteor shower forecasting and observations)
MEO Staff

- Dr. Bill Cooke – Management and data analysis
- Dr. Rob Suggs – Data analysis and collection; oversees lunar impact monitoring
- Heather Koehler (McNamara) - Modeling and software development
- Danielle Moser - Support contractor (meteor shower forecasting and observations)
- Wesley Swift - Support contractor (Equipment design/construction and optical observation analysis)
MEO Staff

- Dr. Bill Cooke – Management and data analysis
- Dr. Rob Suggs – Data analysis and collection; oversees lunar impact monitoring
- Heather Koehler (McNamara) - Modeling and software development
- Danielle Moser - Support contractor (meteor shower forecasting and observations)
- Wesley Swift - Support contractor (Equipment design/construction and optical observation analysis)

Web site: http://meo.nasa.gov
Who cares?

Navy Transit Satellite
(before being shot with a 5 cm Aluminum ball moving at 6 kilometers per second)
Who cares?

The Aftermath

Monday, September 27, 2010
Meteor shower forecasting
Stream Modeling

- Particles ejected from comet and dynamically evolved. Ensemble of particles near target at chosen time determines shower characteristics.
Stream Modeling

- Particles ejected from comet and dynamically evolved. Ensemble of particles near target at chosen time determines shower characteristics.

 - Numerically intensive – many thousands (millions) of particles.
Stream Modeling

• Particles ejected from comet and dynamically evolved. Ensemble of particles near target at chosen time determines shower characteristics.

 • Numerically intensive – many thousands (millions) of particles.

 • Multiple peaks; times and intensities of shower maxima can be obtained.
Stream Modeling

- Particles ejected from comet and dynamically evolved. Ensemble of particles near target at chosen time determines shower characteristics.
 - Numerically intensive – many thousands (millions) of particles.
 - Multiple peaks; times and intensities of shower maxima can be obtained.
 - Shower durations difficult to derive.
2004 Perseids

Particles ejected hourly proportional to r^6 while Swift-Tuttle is inside 2.5 AU

Earth's Path
- 9 rev (826 AD)
- 7 rev (1079 AD)
- 6 rev (1212 AD)
- 5 rev (1348 AD)
- 4 rev (1479 AD)
- 3 rev (1610 AD)
- 2 rev (1737 AD)
- 1 rev (1862 AD)

60° cap angle
• Output for past years compared to IMO ZHR profiles or other historical observations. “Calibrates” the model and enables ZHR predictions for future.
• Output for past years compared to IMO ZHR profiles or other historical observations. “Calibrates” the model and enables ZHR predictions for future.

• Only showers with potential to outburst/storm are evaluated using stream model technique. In other cases, an average observed ZHR profile is used.
• Output for past years compared to IMO ZHR profiles or other historical observations. “Calibrates” the model and enables ZHR predictions for future.

• Only showers with potential to outburst/storm are evaluated using stream model technique. In other cases, an average observed ZHR profile is used.

• ZHRs converted to fluxes using visually-determined population/mass indices.
Annual Forecast

• Issued to NASA spacecraft programs (ISS, Shuttle, Chandra) and others as requested.
Annual Forecast

- Issued to NASA spacecraft programs (ISS, Shuttle, Chandra) and others as requested.
- Re-evaluations of outburst and storm predictions performed as new information becomes available.
Annual Forecast

• Issued to NASA spacecraft programs (ISS, Shuttle, Chandra) and others as requested.

• Re-evaluations of outburst and storm predictions performed as new information becomes available.

• Maximum ZHRs, peak times, and durations are added to existing database of “normal” showers.
Annual Forecast

- Issued to NASA spacecraft programs (ISS, Shuttle, Chandra) and others as requested.
- Re-evaluations of outburst and storm predictions performed as new information becomes available.
- Maximum ZHRs, peak times, and durations are added to existing database of “normal” showers.
- Penetrating fluxes are generated at 1 hour intervals for entire year.
Why these sizes?

Potential Shuttle Damage

Window Replacement
- EVA Suit Penetration
- Radiator Penetration
- RCC Penetration
- TPS Tile Penetration
- Cabin Penetration
- Cargo Bay Damage

Spacecraft Surface Inspections
- Patrol Radars (CMOR)
- ALTAIR/Arecibo Radars

Lunar Impact Monitoring

Atmospheric Optical (Visual, Video, Intensified Video)

Meteoroid Diameter in Centimeters

Bill Cooke/Nick Johnson

Monday, September 27, 2010
Shuttle FRR Forecasts

• Mission launch and end time received from JSC.
Shuttle FRR Forecasts

• Mission launch and end time received from JSC.
• Computer code generates penetrating fluxes at 1 minute intervals for mission.
Shuttle FRR Forecasts

• Mission launch and end time received from JSC.
• Computer code generates penetrating fluxes at 1 minute intervals for mission.
• Flux factors computed relative to the sporadic meteoroid background.
Shuttle FRR Forecasts

• Mission launch and end time received from JSC.

• Computer code generates penetrating fluxes at 1 minute intervals for mission.

• Flux factors computed relative to the sporadic meteoroid background.

• Calculations sent to JSC for inclusion in mission meteoroid/orbital debris risk assessment (Shuttle version of BUMPER code).
Shuttle FRR Forecasts

- Mission launch and end time received from JSC.
- Computer code generates penetrating fluxes at 1 minute intervals for mission.
- Flux factors computed relative to the sporadic meteoroid background.
- Calculations sent to JSC for inclusion in mission meteoroid/orbital debris risk assessment (Shuttle version of BUMPER code).
- 6-hour fluences also calculated for EVA risk.
Verification

• IMO ZHRs are not only used in forecast generation, but also are used in validation of a shower forecast after the event.
Verification

• IMO ZHRs are not only used in forecast generation, but also are used in validation of a shower forecast after the event.

• A few weeks are allowed for the numbers to be revised. We do not use the “real-time” ZHRs unless there is an anomaly investigation with tight deadlines.
The Landsat 5 Anomaly

- At 5:23 UT on August 13, 2009, Landsat 5 lost attitude control (tumbling) while over Alaska.
The Landsat 5 Anomaly

- At 5:23 UT on August 13, 2009, Landsat 5 lost attitude control (tumbling) while over Alaska.
- Control restored within hours; normal operations resumed after 2 days.
The Landsat 5 Anomaly

- At 5:23 UT on August 13, 2009, Landsat 5 lost attitude control (tumbling) while over Alaska.
- Control restored within hours; normal operations resumed after 2 days.
- Similar to 1993 OLYMPUS anomaly, which also occurred during a major Perseid outburst.
The Landsat 5 Anomaly

- At 5:23 UT on August 13, 2009, Landsat 5 lost attitude control (tumbling) while over Alaska.
- Control restored within hours; normal operations resumed after 2 days.
- Similar to 1993 OLYMPUS anomaly, which also occurred during a major Perseid outburst.
- Analysis showed Perseid radiant was visible from satellite at time of loss of control - Perseid strike possible.
Pros and Cons of Visual Observations

- Pros:
Pros and Cons of Visual Observations

• Pros:
 • Many experienced meteor observers
Pros and Cons of Visual Observations

• Pros:
 • Many experienced meteor observers
 • Good global coverage
Pros and Cons of Visual Observations

• Pros:
 • Many experienced meteor observers
 • Good global coverage
 • Accessible data
Pros and Cons of Visual Observations

• Pros:
 • Many experienced meteor observers
 • Good global coverage
 • Accessible data

• Cons:
Pros and Cons of Visual Observations

- **Pros:**
 - Many experienced meteor observers
 - Good global coverage
 - Accessible data

- **Cons:**
 - Visual observations hampered by weather and moonlight
Pros and Cons of Visual Observations

• Pros:
 • Many experienced meteor observers
 • Good global coverage
 • Accessible data

• Cons:
 • Visual observations hampered by weather and moonlight
 • Forecasts bias observers
Perseids from Space

STS-105
August 10-22, 2001
Perseids from Space

STS-105
August 10-22, 2001
Perseids from Space

STS-105
August 10-22, 2001