
Video observations of the 2006 Leonid outburst

Pavel Koten
Astronomical Institute, Ondřejov Observatory, Czech Republic

Contents of the talk

- Leonids 1998 2002, predictions for 2006
- Observations, instrumentation, weather conditions
- Data, methods of processing
- Shower activity, mass index, flux
- Observed data vs. predictions
- Comparison with previous Leonid storms

Leonids 1998 – 2002 and 2006

- comet 55P/Temple-Tuttle last perihelion passage 1998
- several meteor storms in subsequent years (1998 2002)
- lot of new data many papers published ...
- after 2002 shower activity ceased
- for 2006 small outburst associated with 1932 ejecta predicted (2 revolutions old)
- another encounter with this stream November 17, 2000, around 8 UT (Brown et al. 2002)
- McNaught & Asher (1999) November 19, 4:45 UT
- Lyytinen & Van Flandern (2000) at 4:48 UT
- Vauballion et al. (2005), www at 4:58 UT
- all models stream rich in faint meteors, especially in radar range
- visible meteors ZHR about 100

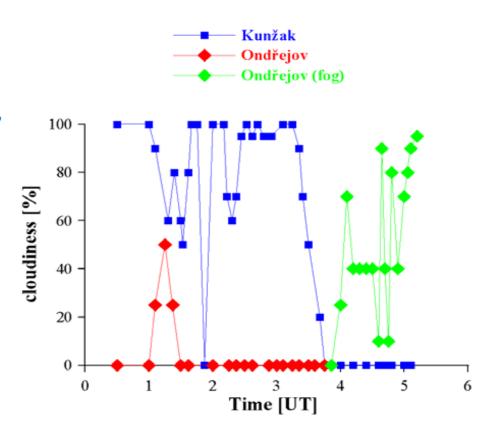
Video double station program

since 1998

double-station program Ondřejov – Kunžak 92.5 km station separation, 340° azimuth during interesting meteor showers activity

personal involvement:

- J. Borovička spectra, Ondřejov station
- P. Koten software, processing, analyses
- P. Spurný second station operation, (Leonids)
- R. Štork observations, searching for meteors


UK

Steve Evans & Andrew Elliott

Observations, equipment, weather conditions

- S-VHS Panasonic camcorder, 2nd generation intensifier Mullard XX1332
- Kunžak Arsat 1.4/50 mm, FOV ~ 45°, MLM +5.0^m, col. area 16 700 km²
- Ondřejov Jupiter 2.0/85 mm, FOV ~ 30°, MLM + 6.0^m, col. area 10 600 km² (computed for altitude 108 km)
- Watec 120N, FOV 50° x 40°, LML +2.0^m (UFOCapture)
- UK experiment
- both stations Watec 902H, 0.8/12mm,
 FOV ~ 31° x 23°, MLM +4.0^m
- S-VHS systems
- separation 211.5 km, azimuth 337°
- CZ variable weather conditions

Recorded data, methods of processing

MetRec identification, digitalization – 768 x 576 px, 25 frames/s, 8bits (monochrome) measurement (MetPhoto), reduction (Mimi)

Double station data (D-criterion):

- CZ: 27 meteors

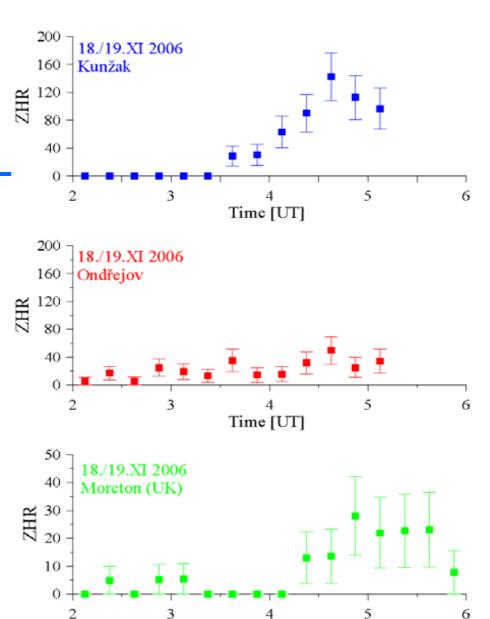
- UK: 13 meteors

Single station data – CZ: 62 meteors

- angular velocity & distance of prolonged path from the radiant Δ
- $\Delta < 3.0^{\circ}$ meteor is usually accepted
- estimated atmospheric trajectory heights \pm 5 km
- (double station data height up to 0.5 km)
- used only for activity profile and light curve shapes

Activity profile \(\xi^{120}_{80} \)

15 minutes counts


only correction – zenith distance of radiant

Kunžak – reliable curve – peak before 5 UT more shallow descending branch

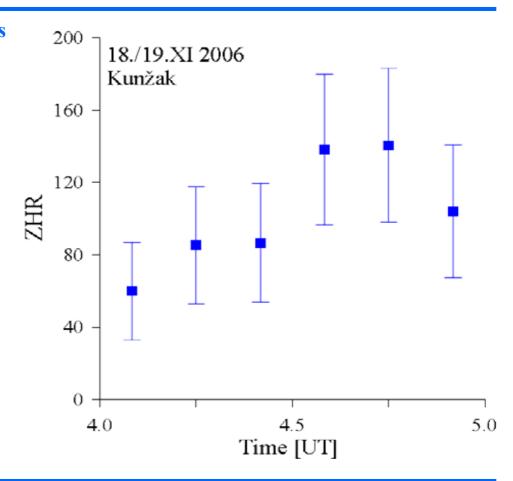
Ondřejov – strongly influenced by fog (correction not applied)

Moreton – lower counts because lower sensitivity increase still visible

Watec – no detection!

Video observations of the 2006 Leonid outburst Pavel Koten

Time [UT]


Maximum activity

detail of activity curve – 10 minutes intervals (shorter intervals useless)

peak occurred around 4:45 UT \pm 10 minutes $\lambda_0 = 236.613^{\circ} \pm 0.007^{\circ}$

impossible to determine more precisely

Moreton – peak at 4:52 UT even lower number of meteors (only 24) previous night – 4-5 times lower number of Leonid meteors

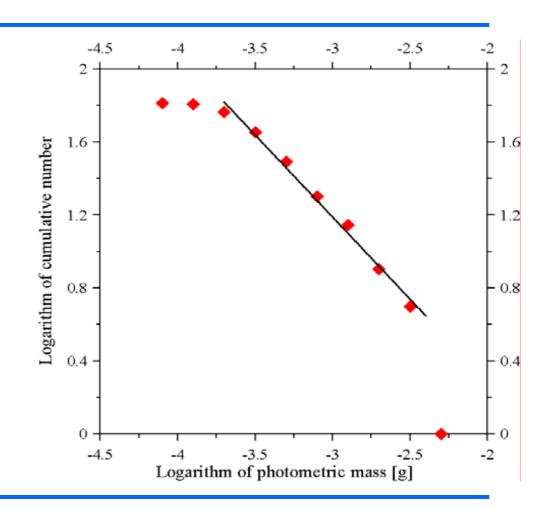
IMC 2007 conference Bareges, June 7. – 10.

Video observations of the 2006 Leonid outburst Pavel Koten

Mass and population index

Kunžak – 65 Leonid meteors

mass distribution index s = 1.9population index r = 2.3

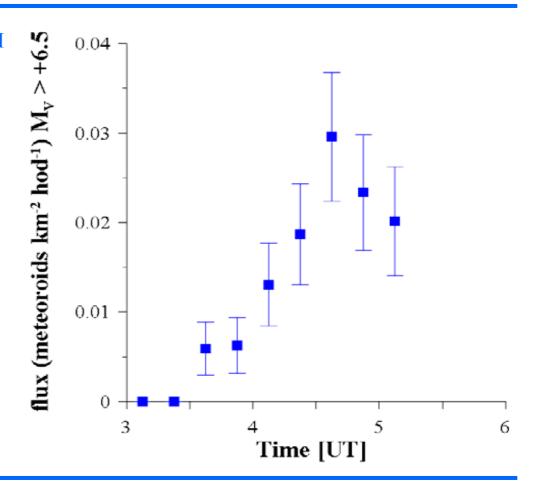

comparison with 2002 encounter: s = 1.7 (Brown et al.) 2006 – shower richer in faint meteors

(no bright meteor, no spectra)

other Leonids:

2001 (7 rev.)
$$s = 1.75$$

1999 (3 rev.)
$$s = 1.8$$



Flux of meteoroids

collection area – flux up to MLM for comparison – flux of meteors brighter than +6.5^m

2000: (Brown et al., 2002) flux (+6.5^m) = 0.15 ± 0.02 km⁻²h⁻¹ ZHR ~ 900 mass index s = 1.7

5 times lower activity in 2006 moreover fainter meteors

Comparison of both encounters

McNaught & Asher (1999):

	2000	2006
Δa_{0}	+0.30	+0.96
r _E - r _D	-0.0012	-0.0001
$\mathbf{f_{M}}$	0.55	0.53

encounter with less dense part of the stream (2006)

Lyytinen & Van Flandern (2000):

comparable parameters of encounter particles about ¼ mm in diameter

Vaubaillon et al. (www): even smaller particles – high activity 0.05 - 0.1 mmlower activity – 0.1 - 0.5 mm (our data)

Ondřejov radar out of the service ⊗

Heliocentric orbits

iterative procedure for shower membership determination – all double station meteors

15 meteors (between 4 and 5 UT = 2 revolution old filament)

very close orbits

mean orbit:

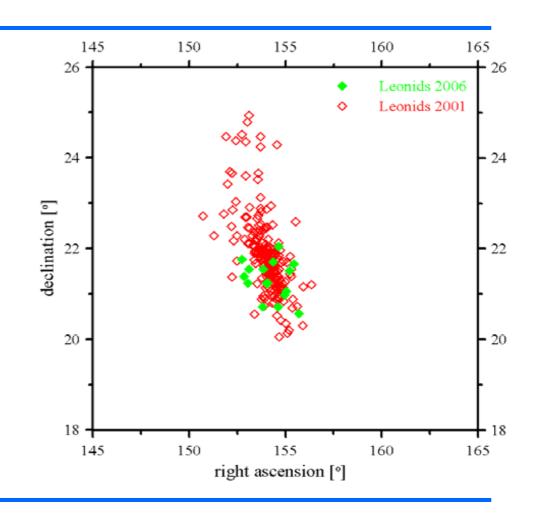
$$e = 0.932$$
 $q = 0.9856$ $\omega = 174.715$ $\Omega = 236.612$ $i = 162.823$

mean "internal" D-criterion among them is 0.06

Radiants

15 meteors

very compact radiant:

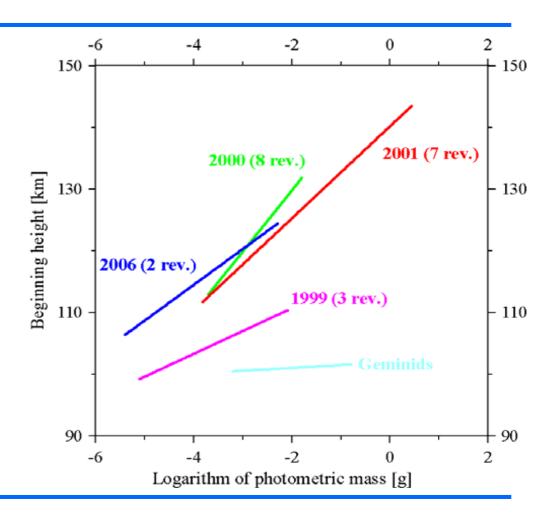

$$\alpha_{\rm G} = 154.24^{\rm o} \pm 0.25^{\rm o}$$

$$\delta_{\rm G} = 21.35^{\rm o} \pm 0.01^{\rm o}$$

comparison with 2001 Leonids (7 revolution old)

± 1 hour around maximum

bigger dispersion of radiants



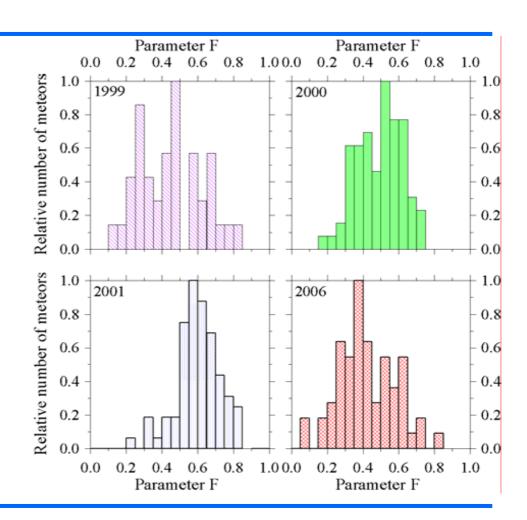
Beginning heights

steeper slope H_B vs. m_p = more fragile particles (Koten et al., 2004)

more compact – deeper penetration into atmosphere (1999, 3 rev.)

comparison with Geminids

Light curves


absolute brightness vs. height

traditionally used parameter F – location of the maximum

it should hint internal structure of the meteoroids

higher F = more compact body

comparison between several filaments

Physical structure of meteoroids

in comparison with other showers Leonids 2006 are fragile (F low almost as for Draconids!)

Leonid streams – different properties

	1999 3 rev.	2000 8 rev.	2001 7 rev.	2006 2 rev.
slope H _B	3.75	9.9	7.8	5.8
mean F	0.48±0.03	0.53±0.02	0.56±0.04	0.43±0.02

relation between time from ejection and structure?

shorter time – lower slope and lower F (more porous)

longer - loss volatiles,
become more sintered (?)

Conclusions

- Significant activity of the Leonid meteor shower in 2006 was recorded
- Activity peaks at around 4:45 UT on November 19 this peak well matches predictions made 7 and 6 years earlier timing, ZHR and brightness of meteors!
- The outburst was rich in faint meteors in radio maybe even more intensive
- very close orbits and radiants of 2 revolution old stream
- meteoroids very fragile on the bottom end in comparison with other filaments recorded in previous years
- possible relation between "age" and physical properties

Acknowledgements

Support for this work was provided by:

- 1. Grant Agency of Academy of Sciences of Czech Republic grant No. KJB300030502
- 2. Academy of Sciences of Czech republic scientific project AV0Z10030501

THANK YOU FOR YOUR ATTENTION!