Precision of a meteor's impact position on the Earth

Eduard Bettonvil

KNVWS Meteor Section

IMC 2007 Barèges, France

Objective and Assumptions

- Objective:

Impact position +
Error ellipse

- Assumptions:
- Meteor is straight line
- No gravity correction
- No refraction correction
- No drag correction

Used initial parameters

- Model presented at IMC 2005

Calculate Impact Point

1) Equation of Impact Point:

2) Equation of Earth's surface:

a and b used from GRS-80 ellipsoid
3) Solution for λ :

Substitution of equation (I) in equation (II) gives λ

Propagation of stochastic part of m to impact point i

1) Law of propagation of (co)variances:

$$
\begin{aligned}
i & =u+\lambda \cdot m \\
Q_{i_{\text {ellipsoid }}} & =\lambda \cdot Q_{m} \cdot \lambda
\end{aligned}
$$

2) Projection:

$$
Q_{i_{\text {ellipse }}}=P \cdot Q_{i_{\text {ellipsoid }}} \cdot P^{T}
$$

3) Result:

Ellipse on tangent plane of impact point i

Impact Point of Meteor "Heesch - Meteren , 22 april 2001"

Meteor Attack!

Acknowledgements

Animations made by:

Gerard Terpstra \& Frank Janssens

Conclusions

Size of Error ellipse:

- magnitude of measurement errors on impact point

Shape of Error ellipse caused by:

- difference in measurement error of station 1 \& station 2
- station ~ meteor configuration
- angle of impact

