Croatian Meteor Network

DARK FLIGHT CALCULATIONS How accurate can they be?

Željko Andreić

Faculty of Mining, Geology and Petroleeum Engineering, University of Zagreb, Croatia

Croatian Meteor Network - Višnjan Science and Education Center zandreic@rgn.hr http://www.astro.hr/hmm/index.html

Contents

1. introduction
2. input parameters
3. drag coefficient
4. atmospheric conditions
5. conclusions

Introduction: a bright meteor is recorded!

Camera network provides data about a point near the trail end:

1. position
2. velocity
3. deceleration

Introduction: a bright meteor is recorded!

Physics provides
 equations of motion (so called drag equations).

we need to know:

1. size, shape and surface roughness of the body to get the corresponding drag coefficient

2. air density profile
3. wind profile

Input parameters all have measurement errors!

CMN, a good triangulation (3 or more stations):

position:	+-100 m
speed:	$+-500 \mathrm{~m} / \mathrm{s}$
deceleration:	$+-50 \%$
direction:	$+-0.5^{\circ}$
enterance angle:	$+-0.5^{\circ}$

Example: a simulated fall of a bright bollide

Ideal fall (no wind, everything known)

Dark flight predictions

——all constant
Vacuum flight

Deceleration uncertainity

Dark flight predictions

Everything together:

input uncertainty
position: $\quad+-100 \mathrm{~m}$
velocity: $\quad+-500 \mathrm{~m} / \mathrm{s}$
deceleration: $+-50 \%$
direction: $\quad+-0.5^{\circ}$
impact angle:+- 0.5°

shift on ground

+- 100 m
+- 500 m
+- 800 m
+- 300 m
+- 100 m
deceleration is the biggest problem!
combined, expected error is about 2000 m

Drag coefficient:

- Shape, surface and velocity dependent!
- shape unknown, we assume a very rough sphere!
high velocities:

smooth sphere:	0.8
rough sphere:	~ 1.6
very rough sphere:	~ 1.2

smooth elipsoid:
~1.0
hemisphere:
flat disk:
~1.6
~5
Expected errors are about $300-500 \mathrm{~m}$

Atmospheric density:

Data from meteorology or from meterological models (the standard atmosphere).

——all constant
air density

Wind speed and direction:

Data from meteorology (atmospheric soundings)

- all constant
——wind $1 \mathrm{~m} / \mathrm{s}$
_-real wind
_real wind (side)

All uncertainties together, 1000 virtual meteorites:

What else:

- we still do not know how to determine/model:
- body rotation
- disintegration
- non-constant winds (bura for example)

A real strewn field:

Gold basin (USA) strewn field of a large meteorite is $4 \times 11 \mathrm{~km}$ in size. Thousands of small meteorites were found in it.

But, carefull: this was a very big meteoroid!

Acknowledgements to:

All CMN members for their devoted work and persistence.

Dr. Dunja Plačko-Vršnak of the Meteorological and Hydrological Service of the Republic of Croatia.

Ministry of Science, Education and Sports of the Republic of Croatia.

Višnjan Science and Education Center, Croatia.

Thank you for your attention. Questions?

