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Traditional approach for mean orbit calculations

Calculation of mean orbit

Typically one takes mean value of heliocentric orbital
elements: a, e, i , ω, Ω.

Instead one can use: 1/a, e, i , ω, Ω.
or: 1/a, q, i , ω, Ω.
even: q, Q, i , ω, Ω can be used.
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Traditional approach for mean orbit calculations

Problem

Averaging kills important mathematical qualities:

Simplest mathematical example:
(1 + 5)/2 = 3
(12 + 52)/2 = 13
32 6= 13

Meteor example:
q = a(1− e)
〈q〉 6= 〈a〉 · (1− 〈e〉)
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Traditional approach for mean orbit calculations

72 Orionids observed by PFN:

〈a〉 = 28.7 AU

〈1/a〉 =

0.101

1/AU

〈e〉 = 0.944

〈a〉 · (1− 〈e〉) = AU

〈q〉 = AU

〈1/a〉−1 (1− 〈e〉) = AU
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Traditional approach for mean orbit calculations

72 Orionids observed by PFN:

〈a〉 = 28.7 AU

〈1/a〉 = 0.101 1/AU

〈e〉 = 0.944

〈a〉 · (1− 〈e〉) = 1.62 AU

〈q〉 = 0.606 AU

〈1/a〉−1 (1− 〈e〉) = 0.557 AU

Conclusion:
mean orbit described above is set of parameters which does
not de�ne a real orbit.
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Jopek et al. method

Heliocentric vectorial elements

Angular momentum hhh

Lenz vector eee

These vectors are perpendicular
to each other. There are 5
independent components.
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Jopek et al. method

Method description

Take at least 7 orbits

Pre-integrate orbits into one epoch

Calculate heliocentric vectorial elements (hhh, eee, E ) for
each orbit

Average vectorial elements constraining hhh and eee are
perpendicular to each other and equation for energy is
satis�ed

Calculate heliocentric orbital elements (q, e, i , ω, Ω)

Di�erence between obtained values can be as big as 2
AU and 0.5 deg in angular elements
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Example of Neuschwanstein

500 clones of Neuschwanstein meteorite consistent with
uncertainties of observed orbital parameters.

Each meteorite was integrated for 5000 years.

For each 10 year interval orbits were averaged using
Jopek et al. method (blue line).

Also best-�tting orbit was integrated (red line).
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Example of Neuschwanstein
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Example of Neuschwanstein

D-criterion for integrated mean orbit and mean of integrated
orbits
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Example of Quadrantids

86 Quadrantids
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Example of Quadrantids

D-criterion for integrated mean orbit and mean of integrated
orbits
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Conclusions

One should use proper method of mean orbit
calculation.

For integrated clones of Neuschwanstein mean orbit is
close to most probable orbit.

Quadarantids: calculation of mean orbit after
integration of orbits gives spurious results.

References:
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