Integration of mean orbits of meteoroid streams

Radek Poleski

University of Warsaw Astronomical Observatory, Poland

IMC - September 2009

1 Traditional approach for mean orbit calculations

2 Jopek et al. method

- Example of Neuschwanstein
- Example of Quadrantids

Calculation of mean orbit

Typically one takes mean value of heliocentric orbital elements: a, e, i, ω, Ω .

```
Instead one can use: 1/a, e, i, \omega, \Omega
or: 1/a, q, i, \omega, \Omega.
even: q, Q, i, \omega, \Omega can be used.
```

Calculation of mean orbit

Typically one takes mean value of heliocentric orbital elements: a, e, i, ω, Ω .

lnstead one can use:
$$1/a$$
, e, i, ω, Ω.
or: $1/a$, q, i, ω, Ω.
even: q, Q, i, ω, Ω can be used.

Averaging kills important mathematical qualities:

• Simplest mathematical example:

$$(1+5)/2 = 3$$

 $(1^2+5^2)/2 = 13$
 $3^2 \neq 13$

• Meteor example: q = a(1 - e) $\langle q \rangle \neq \langle a \rangle \cdot (1 - \langle e \rangle)$

Averaging kills important mathematical qualities:

• Simplest mathematical example:

$$(1+5)/2 = 3$$

 $(1^2+5^2)/2 = 13$
 $3^2 \neq 13$

• Meteor example: q = a(1 - e) $\langle q \rangle \neq \langle a \rangle \cdot (1 - \langle e \rangle)$

Averaging kills important mathematical qualities:

• Simplest mathematical example:

$$(1+5)/2 = 3$$

 $(1^2+5^2)/2 = 13$
 $3^2 \neq 13$

• Meteor example: q = a(1 - e) $\langle q \rangle \neq \langle a \rangle \cdot (1 - \langle e \rangle)$

Averaging kills important mathematical qualities:

• Simplest mathematical example:

$$(1+5)/2 = 3$$

 $(1^2+5^2)/2 = 13$
 $3^2 \neq 13$

• Meteor example:

$$q = a(1 - e)$$

$$\langle q \rangle \neq \langle a \rangle \cdot (1 - \langle e \rangle)$$

Averaging kills important mathematical qualities:

• Simplest mathematical example:

$$(1+5)/2 = 3$$

 $(1^2+5^2)/2 = 13$
 $3^2 \neq 13$

• Meteor example:

$$egin{aligned} q &= a ig(1-e) \ \langle q
angle
eq \langle a
angle \cdot ig(1-\langle e
angle ig) \end{aligned}$$

- $\langle a \rangle = 28.7 \text{ AU}$
- $\langle 1/a \rangle = 1/AU$
- $\langle e \rangle = 0.944$
- $\langle a \rangle \cdot (1 \langle e \rangle) = AU$
- $\langle q \rangle = AU$
- $\langle 1/a \rangle^{-1} (1 \langle e \rangle) = AU$

- $\langle a \rangle = 28.7 \text{ AU}$
- $\langle 1/a \rangle = 1/AU$
- $\langle e \rangle = 0.944$
- $\langle a \rangle \cdot (1 \langle e \rangle) = AU$
- $\langle q \rangle = AU$
- $\langle 1/a \rangle^{-1} (1 \langle e \rangle) = AU$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

- $\langle 1/a \rangle = 0.101 \ 1/AU$
- $\langle e \rangle = 0.944$
- $\langle a \rangle \cdot (1 \langle e \rangle) = AU$
- $\langle q \rangle = AU$
- $\langle 1/a \rangle^{-1} (1 \langle e \rangle) = AU$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

• $\langle 1/a \rangle = 0.101 \text{ 1/AU}$
• $\langle e \rangle = 0.944$
• $\langle a \rangle \cdot (1 - \langle e \rangle) = \text{ AU}$
• $\langle q \rangle = \text{ AU}$
• $\langle 1/a \rangle^{-1} (1 - \langle e \rangle) = \text{ AU}$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

• $\langle 1/a \rangle = 0.101 \text{ 1/AU}$
• $\langle e \rangle = 0.944$
• $\langle a \rangle \cdot (1 - \langle e \rangle) = 1.62 \text{ AU}$
• $\langle q \rangle = \text{ AU}$
• $\langle 1/a \rangle^{-1} (1 - \langle e \rangle) = \text{ AU}$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

• $\langle 1/a \rangle = 0.101 \text{ 1/AU}$
• $\langle e \rangle = 0.944$
• $\langle a \rangle \cdot (1 - \langle e \rangle) = 1.62 \text{ AU}$
• $\langle q \rangle = 0.606 \text{ AU}$
• $\langle 1/a \rangle^{-1} (1 - \langle e \rangle) = \text{ AU}$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

• $\langle 1/a \rangle = 0.101 \text{ 1/AU}$
• $\langle e \rangle = 0.944$
• $\langle a \rangle \cdot (1 - \langle e \rangle) = 1.62 \text{ AU}$
• $\langle q \rangle = 0.606 \text{ AU}$
• $\langle 1/a \rangle^{-1} (1 - \langle e \rangle) = 0.557 \text{ AU}$

•
$$\langle a \rangle = 28.7 \text{ AU}$$

•
$$\langle 1/a \rangle = 0.101 \ 1/AU$$

• $\langle e \rangle = 0.944$

•
$$\langle a \rangle \cdot (1 - \langle e \rangle) = 1.62$$
 AU

•
$$\langle q \rangle = 0.606$$
 AU

•
$$\langle 1/a \rangle^{-1} (1 - \langle e \rangle) = 0.557$$
 AU

Conclusion:

mean orbit described above is set of parameters which does not define a real orbit.

Heliocentric vectorial elements

- Angular momentum **h**
- Lenz vector *e*

These vectors are perpendicular to each other. There are 5 independent components.

• Take at least 7 orbits

- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements $(q, e, i, \omega, \Omega)$
- Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- Take at least 7 orbits
- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements $(q, e, i, \omega, \Omega)$
- Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- Take at least 7 orbits
- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements $(q, e, i, \omega, \Omega)$
- Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- Take at least 7 orbits
- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements (q, e, i, ω, Ω)
 Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- Take at least 7 orbits
- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements $(q, e, i, \omega, \Omega)$
- Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- Take at least 7 orbits
- Pre-integrate orbits into one epoch
- Calculate heliocentric vectorial elements (*h*, *e*, *E*) for each orbit
- Average vectorial elements constraining *h* and *e* are perpendicular to each other and equation for energy is satisfied
- Calculate heliocentric orbital elements $(q, e, i, \omega, \Omega)$
- Difference between obtained values can be as big as 2 AU and 0.5 deg in angular elements

- 500 clones of Neuschwanstein meteorite consistent with uncertainties of observed orbital parameters.
- Each meteorite was integrated for 5000 years.
- For each 10 year interval orbits were averaged using Jopek *et al.* method (blue line).
- Also best-fitting orbit was integrated (red line).

D-criterion for integrated mean orbit and mean of integrated orbits

86 Quadrantids

D-criterion for integrated mean orbit and mean of integrated orbits

Conclusions

- One should use proper method of mean orbit calculation.
- For integrated clones of Neuschwanstein mean orbit is close to most probable orbit.
- Quadarantids: calculation of mean orbit after integration of orbits gives spurious results.

References:

Jopek, T. J., Rudawska, R. & Pretka-Ziomek, H. 2006, *MNRAS* **371**, 1367